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CHAPTER 1: INTRODUCTION

The United States (U.S.) healthcare system is the most expensive in the world. In 2016,

the per capita healthcare expenditure in the U.S. was $10,348, more than eight times the

world average [100], and hospital care forms more than 30% of aggregate U.S. healthcare

spending [68]. However, it is worth noting that the Commonwealth Fund reported in 2014

that the U.S. has the least effective healthcare system among the 11 Organization for Economic

Co-operation and Development (OECD) countries selected in the survey [35].

To improve the quality and safety of care, health information technology (HIT) is broadly

adopted in hospitals, including EDs, along with lean [18, 13, 55, 4] and six-sigma programs

[98, 62, 25, 42]. While electronic health record (EHR) systems form a critical data backbone

for the facility, these IT systems are mostly applied for reactive management of care services

and are lacking when they come to improving the real-time “operational intelligence” of ser-

vice networks that promote efficiency and quality of operations in a proactive manner. We

need systematic coordination methodologies and tools/platforms that can leverage real-time

information combined with predictive analytics to enable proactive coordination, and in turn,

enhance the operational intelligence of service networks.

In particular, we leverage operations research and predictive analytics techniques to de-

velop proactive coordination mechanisms and decision methods to improve the operational

efficiency of bed management service in the network spanning the emergency department

(ED) to inpatient units (IUs) in hospitals, a key component of healthcare in most hospitals

[44, 95]. The purpose of this study is to deepen our knowledge on proactive coordination

empowered by predictive analytics in dynamic healthcare environments populated by clini-

cally heterogeneous patients with individual information changing throughout ED caregiving
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processes. To enable proactive coordination for improved resource allocation and patient flow

in the ED-IU network, we address two components of modeling/analysis tasks, i.e., the design

of coordination mechanisms and the generation of future state information for ED patients,

which become two main chapters of this dissertation.

In Chapter 2, we explore the benefits of early task initiation for the service network span-

ning the emergency department (ED) and inpatient units (IUs) within a hospital. In particular,

we investigate the value of proactive inpatient bed request signals from the ED to reduce ED

patient boarding. Using data from a major healthcare system, we show that the EDs suffer from

severe crowding and boarding not necessarily due to high IU bed occupancy but due to poor

coordination of IU bed management activity. The proposed proactive IU bed allocation scheme

addresses this coordination requirement without requiring additional staff resources. While

the modeling framework is designed based on the inclusion of two analytical requirements,

i.e., ED disposition decision prediction and remaining ED length of stay (LoS) estimation, the

framework also accounts for imperfect patient disposition predictions and multiple patient

sources (besides ED) to IUs. We show that the ED-IU network setting can be modeled as a

fork-join queueing system. Unlike typical fork-join queue structures that respond identically to

a transition, the proposed system exhibits state-dependent transition behaviors as a function

of the types of entities being processed in servers. We characterize the state sets and sequences

to facilitate analytical tractability. The proposed proactive bed allocation strategy can lead to

significant reductions in bed allocation delay for ED patients (up to ∼ 50%), while not in-

creasing delays for other IU admission sources. We also demonstrate that benefits of proactive

coordination can be attained even in the absence of highly accurate models for predicting ED

patient dispositions. The insights from our models should give confidence to hospital managers
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in embracing proactive coordination and adaptive work flow technologies enabled by modern

health IT systems.

In Chapter 3, we investigate the quantitative modeling that analyzes the patterns of de-

creasing uncertainty in ED patient disposition decision making throughout the course of ED

caregiving processes. Proactive resource allocation (e.g., admissions, transport, environmental

service etc.) based on a reliable computerized prediction of ED disposition decisions could help

to significantly reduce boarding delay as demonstrated in Chapter 2. The classification task

of ED disposition decision prediction can be evaluated as a hierarchical classification problem,

while dealing with temporal evolution and buildup of clinical information throughout the ED

caregiving processes. We focus on different time intervals within the ED course (registration,

triage, first lab/imaging orders, and first lab/imaging results). The study took place at an aca-

demic urban level 1 trauma center with an annual census of 100,000. Data for the modeling

was extracted from all ED visits between May 2014 and April 2016. Both a hierarchical dis-

position class structure and a progressive prediction modeling approach are introduced and

combined to fully facilitate the operationalization of prediction results. Multinomial logistic

regression models are built for carrying out the predictions under three different classifica-

tion group structures: (1) discharge vs. admission, (2) discharge vs. observation unit vs.

inpatient unit, and (3) discharge vs. observation unit vs. general practice unit vs. telemetry

unit vs. intensive care unit. We characterize how the accumulation of clinical information for

ED patients throughout the ED caregiving processes can help improve prediction results for

the three-different class groups. Each class group can enable and contribute to unique proac-

tive coordination strategies according to the obtained future state information and prediction

quality, to enhance the quality of care and operational efficiency around the ED. In general,
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classification models that predict target disposition units can provide more actionable infor-

mation than a binary admission prediction model. For example, prediction results from class

group (3) would be more useful than those from class group (1), while making correct pre-

dictions becomes more challenging from class group (1) through (3). We also reveal that for

different disposition classes, the prediction quality evolution behaves in its own unique way

according to the gain of relevant information. Therefore, prediction and resource allocation

and task assignment strategies can be tailored to suit the unique behavior of the progressive

information accumulation for the different classes of patients as a function of their destination

beyond the ED.
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CHAPTER 2: PROACTIVE COORDINATION BETWEEN ED AND INPATIENT
UNITS TO REDUCE PATIENT BOARDING

2.1 Introduction

Operations in healthcare facilities entail complex interactions between patients, care providers

and resources. In order to improve the quality and safety of care, health information technol-

ogy (HIT) is being broadly adopted in hospitals along with lean and six-sigma programs. By

2015, over 84% of hospitals adopted an EHR system in the U.S., an nine fold increase since

2008 [50]. While EHR systems form a critical data backbone for the facility, we need improved

‘work-flow’ coordination tools and platforms that can enhance real-time situational awareness

and facilitate effective management of resources for enhanced and efficient care [56]. In this

paper, we explore the benefits of proactive coordination methods in the form of early task

initiation for the service network spanning the emergency department (ED) and associated

inpatient units (IUs). The significance of ED-IU network is three-fold. First, ED is a major

gateway to hospitals, accounting for more than 50% of inpatient admissions in the U.S [1].

Second, growing ED patient ’crowding’ in recent years has been called an international cri-

sis and has received significant public and academic attention [72, 20, 83, 52, 26]. Finally,

ED crowding is known to result in adverse outcomes such as patient treatment delays and

dissatisfaction [66, 64, 81], patient mortality [94, 17], patients leaving without receiving care

[87, 75, 82], ambulance diversion [23, 91, 40], hospital financial losses [80, 71, 16], and harm

to staff [54, 86]. Given that ED overcrowding affects all three aspects of hospital performance

(clinical, operational and financial), developing effective coordination methods to streamline

patient flow across the ED-IU network is critical.

The literature focusing on the means to alleviate ED crowding and improve patient flow

has been growing. While Hopp and Lovejoy grouped the key management issues in the ED into
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three broad categories, i.e., long-term supply capacity expansion, variability control between

supply and demand, and patient sequencing [53], counter to the general expectation that ca-

pacity expansion will reduce ED congestion, Han et al. and Mumma et al. have concluded

that ED bed capacity expansion does not significantly influence patient crowding [48, 73].

Moreover, capacity expansion is often impractical due to financial and space constraints. For-

tunately, other approaches that attempt to control variability between supply-demand and

improve patient sequencing strategies have shown great promise [88].

Staffing optimization (physicians, nurses, lab techs) has been seen to be an important

topic in improving ED patient length-of-stay (LoS) and census [3, 47]. Wiler et al. evaluated

interventions, such as immediate bedding, bedside registration, advanced triage, physician at

triage, and fast-track service lines, to streamline the front-end processing of ED patients [101].

Xu and Chan proposed that the prediction of ED patient arrivals can help proactively divert

patients before ED becomes severely congested [102]. Eitel et al. discuss different methods for

improving ED quality and flow, including demand management, critical pathways, and process

mapping [41]. Saghafian et al. suggested an analysis framework for a patient ‘streaming’

strategy based on queueing network analysis to improve ED operations [89]. Shi et al. explored

interactions between IU patient discharge practices and ED boarding [92]. Also, lean and six-

sigma management methods have been exploited successfully for improving ED congestion

[11]. Several studies have also focused on the use of discrete event simulation as a means for

ED operations improvement [70, 65, 76].

A conceptual model partitioned the causes of ED crowding into three interdependent com-

ponents: input, throughput, and output [8]. Meanwhile, research has shown that output

factors, i.e. factors preventing timely transfer of emergency patients to inpatient beds, sig-
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nificantly contribute to ED crowding [97, 43, 92], the main investigation topic of this study.

In particular, Abraham and Reddy show that ineffective inter-departmental interactions and

information handoffs are the two predominant challenges that inhibit smooth patient transfers

between departments [2].

Research has suggested that if the hospital admissions of ED patients can be predicted early

during triage and communicated to different departments of a hospital, then necessary steps

can be taken early to reduce transfer delays [79], the primary focus of this paper. Batt and

Terwiesch also discuss a similar approach, early task initiation where certain downstream stage

tasks can be initiated earlier than their normal start times by upstream stage servers within the

ED [15]. However, unlike the approach that Batt and Terwiesch take, in our coordination

strategy, the upstream stage (ED) guides the downstream stages (IUs and support services) to

initiate their own tasks early, when deemed appropriate based on future state predictions.

In this chapter, we explore proactive coordination signals between ED and the inpatient

units for patients likely to be admitted to the hospital beyond ED treatment, so as to reduce

transfer and ‘boarding’ delays. Boarding refers to situations where patients to be admitted

are held-up in the ED, past their ED treatment, utilizing critical and expensive resources while

waiting for IU beds to be allocated and prepared. U.S. Center for Disease Control (CDC)

reports that 62% of hospitals experience boarding patients for two hours or more at some

point in the year [28]. The boarding time based on a survey of 1,195 U.S. EDs accounted

for about 37% of the time an admitted patient spent in an ED on average [9], and the latest

data from the Center for Medicare & Medicaid Services (CMS) report that patients in U.S. EDs

are experiencing median boarding time of 2 hours and 16 minutes, with the longest delay

of 4 hours and 26 minutes, in the District of Columbia [31]. It is also estimated that EDs
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experiencing severe boarding lose conservatively $15,500 a day of revenue compared to an

average ED. This accounts for both direct losses from a significantly higher number of patients

simply walking away or diverted to other hospitals due to long wait times as well as from lost

admissions to IUs [10]. To bring more attention to ED crowding, the CMS is requiring hospitals

in the U.S. to report length of boarding delay as an ED crowding measure since 2014 [33].

To reduce boarding through early task initiation, our coordination framework relies on

prediction models that can estimate the ED patient’s remaining length-of-stay (LoS) at different

stages of the ED treatment process as well as models that can predict patient’s likely admission

to a specific IU, i.e., disposition decision prediction. There is a growing body of literature on ED

LoS modeling [61, 27, 30] and admission predictions [78, 84, 14]. As for LoS predictions, [30]

explored fifteen factors statistically associated with ED LoS and showed the predictive validity

of a multivariate accelerated failure time model. As for disposition decision prediction, [14]

have attained an accuracy of 91.23% and a sensitivity of 94.35% within an hour of patient

arrival to the ED, while limiting the false-positive rate to 10%. Our analysis reveals that these

performances are more than adequate to attain significant improvements in ED boarding under

the proposed proactive IU bed allocation scheme.

From a tactical standpoint, Qiu et al. suggest a cost sensitive inpatient bed ‘reservation’

policy to reduce ED boarding time. The policy recommends an optimal bed reservation time

slot based on a modified newsvendor model to minimize the cost of patient waiting and bed

wastage [84]. They assume that the combined lead-time for IU bed preparation, assignment,

and patient transfer is deterministic and known. In addition, their approach assumes inde-

pendence in handling the work-flows for individual patients and does not explicitly account

for ED-IU network level performance. We rely on a fork-join queueing network representa-
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tion to effectively model the ED-IU network and analyze the performance of the proposed

work-flow coordination scheme utilizing these predictive outcomes. The proposed scheme is

practical and can be operationalized in hospitals without having to require significant changes

to current service practices.

2.1.1 Contributions

This work allows us to make the following contributions:

1. We present a fork-join queue structure model for representing and analyzing the pro-

posed proactive IU bed allocation scheme within an ED-IU network. This structure

necessarily incorporates potential cancellation of bed preparation tasks that cause state-

dependent behaviors. Instead of assuming that all servers and queues respond identically

to all events (typical of fork-join queue studies), our original model entails more realistic

transitions between states depending on system states. Our model successfully man-

ages bed preparation effort and reduces the boarding time of ED patients by proactively

preparing beds for the patients identified as likely to be admitted.

2. We characterize the benefits from employing the proposed patient flow coordination

scheme across the ED-IU network through sensitivity analysis under specific combina-

tions of bed request signal lead-time, patient admission rates, and bed preparation ser-

vice rates. We show that under a reasonable ED-IU network setting with a bed prepara-

tion server having an exponentially distributed service time with a mean of 60 minutes,

proactive IU bed request signals issued 90 minutes ahead of actual ED physician dispo-

sition decisions can attain on average 53% reduction in inpatient bed allocation delays.

We also explicitly quantify the impact of disposition prediction capability on boarding
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delay reduction through our analysis.

Key insights resulting from our study are the following: 1) EDs suffer from severe crowding

and boarding in the afternoons and evenings not necessarily due to high IU bed occupancy but

due to poor coordination of IU bed management activity, 2) There are significant portions

of the day when IU patient discharge pattern does not influence the ED-IU network flows,

allowing proactive IU bed allocations without having to explicitly consider IU occupancy, 3)

Proactive bed request signals can lead to significant reductions in ED patient boarding, 4)

Proactive bed preparation for ED patients does not compromise delays for other IU patient

sources, 5) Benefits of proactive coordination can be attained even in the absence of highly

accurate disposition prediction models, 6) Proposed coordination scheme effectively deals with

Type I and Type II disposition prediction errors and does not increase the long-run utilization

of bed preparation servers even under false positive predictions, and 7) Improved disposition

prediction quality leads to greater benefits in boarding delay reduction as servers operate with

higher utilization.

2.2 Clinical Setting & Observations

This section briefly introduces the operations across the ED-IU network in an academic

urban level 1 trauma center by analyzing data gathered over multiple years (May 1, 2014 –

December 15, 2016), constituting 243,745 ED visits and 41,942 admissions. Table 1 summa-

rizes descriptive statistics of the operational facts around the ED-IU network in the hospital.

This ED receives 10.6 patients per hour on average and has 108 beds in total (including 31

beds that can be placed in hallways during peak periods). Figure 1 illustrates the general pa-

tient process flow within the ED-IU network. After a certain level of observation and treatment

for a patient, an ED physician decides whether the patient should be admitted for further care
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Table 1: Summary Statistics of Supply and Demand around the ED-IU Network

(a) Capacity Counts

Number of IUs / only GPUs 26 / 10

Number of beds in all IUs / only GPUs 758 / 360

Number of beds in ED rooms 77

Number of beds that ED hallways can accommodate 31

(b) Demand (on weekdays)
10%ile / Mean / 90%ile

Midnight to noon Noon to midnight

ED bed occupancy 31.0 / 47.1 / 64.0 56.0 / 71.0 / 85.0

Number of boarded ED patients 3.0 / 8.5 / 15.0 6.0 / 12.7 / 21.0

Number of ED dispositions to IUs per hour 0.0 / 1.2 / 3.0 1.0 / 2.5 / 5.0

Number of total admissions to IUs per hour 1.0 / 3.2 / 6.0 3.0 / 5.9 / 9.0

or discharged. If admission is necessary, the physician determines the IU most clinically appro-

priate for the patient based on the diagnosis (labeled ‘disposition’ decision). A request is then

sent to the bed management team for identifying a bed for the patient within the target IU. If

there is a bed ready for use upon an admission, the bed allocation process is completed shortly.

However, if a bed is still in the process of preparation, it takes longer to reach patient-bed

assignment. Once a bed has been assigned, the patient is physically transferred to the IU.

Like most EDs, the ED in this hospital suffers from severe boarding delays. In the studied

period, a typical admitted ED patient spent on the average 4 hours and 39 minutes receiving

Disposition

Decision

Bed

Request

Bed Identification

& Negotiation

Remaining Bed

Preparation

Patient

Transfer

Bed

Assignment

Figure 1: Typical Process for Admitting Patients from ED to IUs
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Table 2: Process Intervals between Inpatient Unit Bed Request and Patient Departure from ED

Process intervals
Process duration (minutes)

10%ile Mean 90%ile

ED patient arrival to ED disposition decision 109 278.7 482

Disposition decision to IU admission approval 17 75.8 163

Admission approval to IU bed assignment 6 102.2 269

Bed assignment to patient departure from ED 30 80.1 144

care within the ED and another 3 hours and 2 minutes undergoing additional boarding delay

after admission approval. The facility is not an outlier in relation to boarding delays experi-

enced by EDs across the U.S. [31]. Table 2 reports interval duration statistics for the different

stages of the admission process. This hospital also utilizes an admission approval process from

patient’s health insurance provider, accounting for an additional 1 hour and 16 minutes of

boarding delay on average. In this study, we target the reduction of admission approval to

IU bed assignment delay (102.2 minutes long on average), which is labeled as bed allocation

delay (BAD) in this paper.

The ED bed occupancy rate of a hospital has often been used as a simple yet reasonable

measurement for ED crowding status [69, 63]. Similar to [6], Figure 2 reports the average ED

census patterns for the case study hospital, i.e., occupancy rate, by time of day on weekdays.

For instance, at 10AM, there have been 104 days where the ED occupancy was between 31

and 35 patients during the data collection period (686 weekdays), yielding a frequency of

0.15. Overall, the ED census can be categorized into four distinct stages according to its

behavior: a) steady low census in the morning between 7–10AM; b) increasing census between

10AM–4PM; c) steady high census in the evening between 4–11PM; and d) decreasing census
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between 11PM–6AM. Obviously, ED census is a function of both ED arrival and departure rates

and is influenced by ED service and boarding rates experienced at different times of the day.

For example, during the decreasing census stage (d), the combined rate of IU admission and

ED discharge exceeds the rate of ED arrivals. We can observe that there have not been many

weekdays where the ED census exceeds 76 patients (full of regular beds or 70% bed occupancy,

with < 10% relative frequency) between 1AM–1PM. Indicating that patient boarding, even if

present during this window, is not significant for ED has additional beds to serve incoming

patients. However, from 2PM–Midnight, we see that ED reaches higher levels of occupancy,

exhausting all beds on occasion and potentially suffering from the side effects of boarding.

[103] and others suggest that the incidence of serious complications increases significantly for

boarded patients as EDs reach high levels of occupancy.

The ED patient arrival rate is mostly outside the control of the hospital, and hence, is un-
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Figure 2: ED Patient Census by Hour of the Day during Weekdays
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controllable. However, even if we were to take the ED service and the arrival rates as given,

there are periods within a day where the boarded patient census is somewhat controllable due

to increased outflow rate via proactive bed preparation (even without changing any patient

treatment or observation procedures/protocols in the ED). Figure 3(a) reports the average

number of ED patients that experience different levels of BAD at each hour of the day. The

delays peak between noon–10PM, with a sharp drop as we increase the threshold for BAD

(notice the large gaps between the lines during this time range). Note that during late evening

and early morning hours, the number of patients experiencing delays does not drop easily

even when we consider BAD limits reaching 10 hours. This can be partially attributed to lack

of unoccupied beds in IUs for patient admission. Fortunately, as can be seen from Figure 2,

the boarding delays during these periods do not lead to excessive ED crowding as there are

far fewer ED patient arrivals compared to ED discharges during these hours. On the con-

trary, while many more patients are experiencing delays during the day and early evenings,

relatively few patients are experiencing excessively long boarding delays. This is because IUs

experience more discharges during the day, replenishing bed supply for incoming patients from

the ED and elsewhere. Boarding delays during afternoons and evenings contribute to severe

ED crowding and should be seen as being “more harmful" to ED operations. Fortunately, these

boarding delays are not due to IU bed shortages and can be alleviated through proactive IU

bed allocations and coordination, which is the primary focus of this manuscript. In summary,

not all of the boarding delays contribute to overcrowding in the ED. Rather, it is the boardings

that occur during a specific time range (between 2PM–midnight in our ED) that severely de-

teriorate overcrowding in the ED and can be controlled through more effective and proactive

coordination. This pattern is typical of most hospitals across the U.S. as it is a common prac-
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Figure 3: ED Patient Bed Allocation Delay (BAD) and IU rate and occupancy patterns by Hour

of the Day

tice in the industry to discharge most of the IU patients around noon after being examined by

providers during their “morning rounds" [99].

Figure 3(b) provides clear evidence for the availability of unoccupied IU beds during the

time that the ED suffers from severe crowding. This is quite important for much of the extant

literature often assumes that boarding is simply a result of IU bed shortage. Figure 3(b) clearly

shows that from noon and beyond, the number of beds becoming unoccupied exceeds the

number of beds required by admissions, supporting the arguments made based on Figure 3(a).

The directors for the ED at this hospital also believe that this is representative of most EDs

across the country. However, due to the uncertainty in admission rates to different units, it is

difficult for the servers to prioritize their bed preparation tasks on their own. The added com-

plication is that they are responsible for other duties besides bed cleaning. This is discussed in

more detail in Section 2.3. Figure 3(c) provides strong evidence that there is an opportunity

to improve bed allocation processes for many beds that become unoccupied after about 2PM.

It plots the probability that there are no unoccupied beds in IUs. The term “no beds" is defined

to represent the inpatient bed status where there is only 0 or 1 unoccupied beds in the IU. We
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conservatively included the 1 unoccupied bed case into the “no beds" category to account for

any possibility that a bed is being held or blocked due to infection concerns or is temporally

unavailable. The different IUs show their own occupancy trends but share the common fea-

ture after about 2PM, i.e., the increasing availability of beds. Moreover, considering routine

overflow allowed among clinically similar IUs, the probability of unoccupied bed availability is

even higher in reality.

2.3 Proactive Coordination of Inpatient Bed Allocation Process

In this chapter, we propose managing inpatient bed preparation servers in IUs through

proactive bed request signals during periods of ED congestion so that bed allocation processes

can be completed near “just-in-time" to ED patient disposition decisions to reduce boarding de-

lays. Rest of the time, i.e., besides the peak discharge hours, bed cleaning/allocation processes

revert to their normal routines where beds are cleaned as soon as they become unoccupied.

Like most hospitals, the case study hospital operates environmental service (EVS) teams that

are in charge of cleaning inpatient beds as well as area decontamination, hygiene manage-

ment, and managing linen/paper and other supplies for the area. Generally, a group of servers

are assigned to a set of adjacent IUs that share similar bed features (i.e., partially pooled).

During the large volume of IU discharges in the early hours of the afternoon (see Figure 3(b)),

servers lag behind in cleaning beds. Unable to clean beds as soon as they become unoccupied,

they end up cleaning IU beds according to bed demand at the moment, generating queue lines

and resulting in prolonged (more than 2 hours) BAD as shown in Figure 3(a).

While one might consider adding more EVS staff to cope with the sharp peak demand for

bed cleaning that emerges in the afternoon, it has been shown that the annual cost associated

with such a strategy could exceed several million dollars for the case study hospital and is not
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Figure 4: Proactive IU Bed Allocation Strategy for Reducing Boarding Delay

cost-effective. Instead, the requirement during this window with a large number of patient

discharges is to proactively prioritize the cleaning of the beds to those IUs facing immediate or

projected demand from the ED and other sources. We demonstrate that if servers could only

receive advance bed request signals for likely admissions at each IU with adequate lead-time,

they would be able to better plan and manage their work to drastically reduce ED patient

boarding, and in turn, ED crowding. The hospital already employs communication tools and

platforms (e.g., EPIC EHR system combined with pagers between EVS servers and bed man-

agers) that can be leveraged for operationalizing these proactive signals.

Figure 4 illustrates our strategy for enabling proactive bed allocation by exploiting EHR

data to predict future state information of ED patients. The key assumption is that once a

patient enters an ED and starts undergoing triage, testing (laboratory work and imaging), and

care, there is adequate and growing information for the patient within the EHR (including

prior health history) to allow reliable prediction of ED disposition decision and remaining ED

LoS well ahead of the final disposition decision, to proactively signal the relevant IU regarding

an impending admission and need for a bed. As noted in Section 2.1, extant literature offers
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effective algorithms and techniques for addressing both requirements. In this section, we

further investigate key interactions among the different entities within the ED-IU network so

as to generate an effective and realistic proactive bed allocation scheme for reducing boarding

delays.

2.3.1 Patient Flow Between ED and Inpatient Units

While an IU bed request signal is initiated along with the actual disposition decision of an

ED patient within the traditional bed allocation scheme, with proactive bed allocation, a bed

request signal is passed to an IU before the physician arrives at a disposition decision for the

patient. The following list, in combination with Figure 5, summarizes the different scenarios

that can be expected depending on the bed allocation strategies and situations.

1. Reactive bed request with available beds: A bed request is sent to an IU as soon as a

disposition decision for a patient is made, and there is already a bed available for the

patient. In this case, there is no bed allocation delay for the patient.

2. Reactive bed request with no bed immediately available for allocation: This is the most

common but undesirable situation in the ED-IU network under the current bed allocation

scheme. At worst, patient can experience a boarding delay equivalent to the full lead-

time associated with bed preparation as well as waiting time in the queue. The red line

in Figure 5(2) is representative of the length of these delays.

3. Proactive bed request with available beds: As depicted in Figure 5(3), a bed request is sent

before patient’s disposition decision. Right after the disposition decision, patient can be

transferred to the IU and experiences no bed allocation delay as in scenario (1).
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Scenarios Event orders Illustration

Reactive:

(1) B – R(P) – A

(2) R(P) – B – A

Proactive:

(3) B – R – P – A

(4) R – B – P – A

(5) R – P – B – A

BED REQ. ADM.

REQ. ADM.BED

REQ. ADM.BED

REQ. ADM.BED

REQ. ADM.BED

Event Notation: B – Bed becomes available; R – Bed is requested; P – Physician’s disposition decision; A – Admission to IU complete

Figure 5: Delays in Bed Allocation Process Under Different Strategies and Event Orders

4. Proactive bed request where bed is not readily available but will become available by dis-

position decision time: In this scenario, a patient could experience significantly reduced

boarding delay thanks to an advance bed request compared to the current bed allocation

scheme.

5. Proactive bed request where bed becomes available after final disposition decision: This is

another case where a positive impact of a proactive bed request is expected. While a bed

is still not available when a disposition decision is made, since a bed request has been

sent before the disposition decision, there is a good chance that boarding delay would be

reduced.

2.3.2 Scheme of Proactive Inpatient Bed Allocation

The proactive inpatient bed allocation process scheme facilitates ED care providers to send

an advance bed request signal to an IU or a bed preparation server based on the future state

information predicted for the patient. Figure 6 depicts the underlying concurrent process of
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two different server systems of the scheme. The fundamental idea of the proposed scheme is

that right after sending a bed request signal to an IU, the flow forks into two different routes,

which are remaining ED processes (server s1) and bed preparation/allocation processes (server

s2). A bed assignment is made at server s3 when both a patient and a bed are ready at each

queue at server s3. More specifically, this scheme is proposed based on the following three

main considerations:

1. Impact of Bed Request Signal Lead-Time: In this scheme, the ED LoS estimation model is

continuously updating its predictions as ED patients go through more care steps. Given

recent advances in LoS modeling techniques, we make a reasonable assumption that a

model without bias is available, and we allow a rather large prediction coefficient of

variation of 1. In particular, we assume that the remaining LoS follows an exponential

distribution with a known mean (µ1 time units). We allow IU bed managers to start

bed allocation processes in a first-in-first-out (FIFO) manner as soon as they receive a

proactive bed request from the ED. Under this setting, it is expected that the proposed

scheme in Figure 6 can provide insights into the impact of the extent of proactivity in

bed allocation, i.e., bed request signal lead-time, on boarding delay reduction. This in

turn helps identify the optimal signal lead-time as a function of service rate of the bed

preparation server s2 and admission rate to the IU. Server system s1 is a conceptual

system that includes all ED processes remaining for a patient after sending an early bed

request, i.e., representing bed request signal lead-time, and is not physically separated

from the ED.

2. Indistinguishable Beds within an IU: While a hospital usually groups beds into multiple

distinct IUs, the beds are homogeneous within any specific IU or over a set of IUs allow-
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ing overflow. Moreover, any special equipment or accessories (e.g., oxygen) necessary for

caring a patient are also common within an IU. So, there is no need to reserve a prepared

IU bed for any particular ED patient within IUs that share same bed features. Rather, a

prepared bed is ready to be occupied by any ED patient who comes first even if an early

bed request is not sent for the patient. This makes the proposed unit-dedicated reser-

vation scheme more flexible than patient-dedicated reservations that would be found

inefficient in real hospital settings. Hence, the bed assignment process at server s3 is

modeled as a FIFO process.

3. Significant Uncleaned Inpatient Beds: As discussed earlier in this section, unlike the com-

mon expectation that discharged IU beds are immediately cleaned, many discharged IU

beds remain uncleaned for few hours during the peak discharge period. It is mainly at-

tributable to the surge of discharges within a short period (three to four hours). In turn,

this practice makes bed preparation process to be reactive for many admissions, and the

‘delayed bed turn around issue’ has been a significant concern in the hospital. The bed

preparation service time is shown to approximate an exponential distribution (see Sec-

tion 2.8.1). The model takes µ2 to represent the mean bed preparation time at server

s2.

In this model, there is no need to account for ED processes carried out before the advance

bed request signal is initiated (no matter how complex and different they are for patients).

Assuming that the set of ED processes prior to bed request signals are operating in a stable

system, it is reasonable to assume that the bed request signals follow a Poisson process. The

remaining ED processes are represented as a ∞-server system (server s1). The justification

for the infinite size of servers is that even if a patient would suffer from not receiving prompt
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Figure 6: General Scheme for Proactive Inpatient Bed Request and Allocation

treatment due to the temporal lack of care providers, it can still be regarded as one being

served with longer service time at server s1, which can already be calculated by remaining LoS

estimation models. So all of the patients in s1 are regarded “being served".

There are s bed cleaning/preparation servers assigned to a certain section in the hospital.

After finishing both services at s1 and s2, an ED patient with an actual disposition decision

and a prepared bed are merged at server s3. The joining process is viewed as the patient–

bed assignment process. Due to difference in mean service times of the two servers, their

configurations, and stochasticity, there would be gaps in the timings of the service completions

at server s1 and s2. Let N1(t) denote the number of patients who have completed services at

server s1 and N2(t) represent the number of beds that have been prepared for patients at time

t. Then, the lengths of the two queues at server s3 can be specified as follows:

LPTQ (t) = [N1(t)−N2(t)]+ and LBDQ (t) = [N2(t)−N1(t)]+ , (2.1)

where LPTQ and LBDQ correspond to the size of the queues for patients and beds, respectively.
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This network can be seen as an example of a fork-join queue structure. Within any type

of a fork-join queue system, once one operation is finished, the outcome is stacked in a queue

waiting for the other operations for the other components, and then the jobs synchronize

before they leave for a next operation. However, the proposed network is unique in that the

configuration of servers in the two server systems are different as well as their service times.

Moreover, the baseline model (Figure 6) is modified significantly by incorporating multiple

arrival sources and queue management rules, which make the network close to a real-world

setting. One of the main objectives of this study is to model and analyze the expected values

of LPTQ (t) as t→∞, depending on several parameters.

2.4 Modeling Framework

This section introduces additional modeling details that further shape the baseline model

to account for realities of ED-IU network operations. First, IUs serve patients not only being

admitted from the ED but also patients arriving from other admission sources (including out-

patients, transfers from other hospitals, and transfer from different departments within the

hospital). Second, patient disposition predictions are error prone. Bed preparation/allocation

operation rules should be able to effectively handle the unexpected status of the network re-

sulted by errors. Relationships among the different types of patients and beds in the ED-IU net-

work are translated into state-dependent transitions among states representing the network,

and a continuous-time Markov chain is built to mimic the overall behavior of the network. We

limit proactive IU bed allocations to ED patients alone according to the primary aim of this

study, and future research can consider extending the framework to entertain proactive IU bed

allocations for other sources.
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2.4.1 Other Patient Sources for IU

For differentiating patients coming from different sources, let Type E and O denote ED

patients and non-ED patients, respectively. Without loss of generality, we treat patients being

admitted from all other sources besides ED as a single type of patients, i.e., O. This forms two

demand types of patients for IUs, which are Type Ep and Type O patients, representing ED pa-

tients for whom inpatient bed request signals have been sent (i.e., patients positively predicted

to be admitted to the specific IUs) and patients coming from other sources, respectively.

While Figure 6 presents the proposed proactive bed allocation scheme focusing only on

ED patients, if not handled effectively, a bed readied for a Type E patient might be occupied

by a Type O patient, compromising operational benefit. To guarantee the positive impact of

the proactive strategy to the greatest extent possible to ED patients, we propose proactive bed

allocation that reserves IU beds for Type E patients rather than non-dedicated bed allocations.

By reserving beds for Type E patients, beds prepared in response to requests will be dedicated

to ED patients and can only be occupied by ED patients. Moreover, we assume that Type E pa-

tients cannot take beds prepared for Type O patients either, to ensure that the bed reservation

will not compromise the efficiency of bed allocation for Type O patients.

2.4.2 Accounting for Disposition Decision Prediction Errors

Under the proactive inpatient bed request and allocation scheme, each of the predictions

becomes a source of errors caused from uncertainties in ED treatment and operations. The er-

rors generated from remaining LoS estimation is partially represented with the exponentially

distributed service time of s1 server, which is remaining service time in the ED. Since coefficient

of variation is unity for an exponentially distributed random variable, we implicitly model the
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Figure 7: Fork-Join Queue Structure of Proactive Inpatient Bed Allocation.

estimated remaining service time at s1 with an increasing variance as the mean increases. In

other words, the sooner we estimate the remaining ED LoS for a patient upon arrival to ED,

the higher the variance of the estimate. This is consistent with the observation that as patients

go through more treatment/observation processes in the ED, the uncertainty of patients’ fu-

ture state information reduces because of the larger amount of information accumulated for

patients.

The second type of error comes from disposition decision prediction. While the outcomes

from remaining ED LoS estimation are continuous values, prediction results from disposition

prediction are discrete, being a class. In particular, for a specific IU, say unit ω, the outcome of

the classification will be either positive, meaning “will be admitted to ω" or negative, meaning

“will not be admitted to ω". The outcome of the classification will be either correct or incorrect,

and depending on actual disposition decisions, patients must be handled in different ways for
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reducing the total ED boarding delay. Figure 7 depicts the queueing network representation of

the ED-IU network dealing with the classification errors as well as other admission sources. To

fully specify all possible behaviors in the network, we introduce three probability parameters p,

q, and r in Figure 7. p is the probability of sending a bed request to unit ω. There are two types

of errors possible in the classification problem. First, false positive or Type-I error indicates

the case where a classification model predicted that a patient will be sent to unit ω, while the

patient is actually discharged or admitted to any other unit than ω, which is represented with

probability 1 − q in Figure 7. Second, false negative or Type-II error indicates the case where

a patient is classified to be discharged or admitted to a unit other than ω, but the patient is

actually being admitted to unit ω as displayed by probability r in Figure 7. The frequency of

sending a bed request to unit ω is a function of probability thresholds in a disposition decision

prediction model that acts as a filter for making positive prediction.

Unlike clinical classification problems, the evaluation of the two types of errors in oper-

ations should involve the investigation of the operational impact of them, rather than their

nominal levels. Even the impacts are hard to be evaluated based on a prediction performance

measure, e.g., the accuracy that is widely used to measure prediction performance. Let A de-

note the accuracy of disposition prediction and Z denote the admission probability from the

ED to unit ω. Then, A = pq + (1 − p)(1 − r) and Z = pq + (1 − p)r by definition. Since

0 ≤ q ≤ min(1, Z/p),

1− Z − p ≤ A ≤


1 + Z − p if p ≥ Z

1− Z + p otherwise,

(2.2)

holds true. Even though the quality of bounds for accuracy are determined by the quality of
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Table 3: Patient Types

Patient Advance Disposition
type Source bed request decision Rate Classification result

EP ED Yes Not made yet pλe

ET
P ED Yes Admitted pqλe True positive

EF
P ED Yes Not admitted p(1− q)λe False positive (Type-I error)

EN ED No Not made yet (1− p)λe

ET
N ED No Not admitted (1− p)(1− r)λe True negative

EF
N ED No Admitted (1− p)rλe False negative (Type-II error)

O Non-ED No Admitted λo

classification models, the equation implies that the lower bound for accuracy of disposition

prediction increases as the rate of early bed requests decreases (pλe). In addition, the upper

bound also increases as the rate of early bed requests decreases except for the case when p < Z.

Considering that the value of Z is fairly small (e.g., in the studied hospital Z < 0.1 for any

single IU), a naive policy primarily concerned about prediction accuracy can discourage early

bed requests with smaller p, counter to our goal of relying on proactive requests to reducing

boarding delays. Instead, the coordination policy should better account for the costs and

operational outcomes associated with both Type-I and Type-II prediction errors. Through the

patient types defined (introduced in Table 3), our model can quantify the operational impact

based on a variety of prediction performance measures such as accuracy, diagnostic odds ratio,

and F-score.

According to the proactive bed allocation network depicted in Figure 7, seven types of

patients can exist as listed in Table 3. The arrival of ED patients to the network is modeled

as a Poisson process with rate λe. A Type E patient turns into either a Type EP patient with

probability p or a Type EN (negatively predicted) patient with probability 1 − p. Then, a

Type EP patient becomes either a Type ET
P patient with rate q or a Type EF

P (Type-I error)
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patient with rate 1 − q, depending on the final disposition decision for the patient. Also,

depending on the actual outcomes, a Type EN patient becomes either a Type ET
N or EF

N (Type-

II error) patient. Then, only Type ET
P and EF

N patients head for server s3. Since we assume

indistinguishable inpatient beds, a bed reserved upon a bed request made for a Type ET
P patient

can be assigned to any Type ET
P or EF

N patients in a FIFO manner.

2.4.3 Representation of Bed Types

The errors in classification prediction not only generate different types of patients but also

cause different types of beds. In particular, when a Type-I error (false positive) occurs, the

network exhibits state-dependent transition behaviors. For instance, if an ED patient turns out

to be false positive for whom a bed is already prepared and if there are no ED patients in the

network, the bed should be handed over to non-ED patients waiting for beds. Therefore, this

situation brings the need for defining an activity that cancels the bed reservation and releases

the bed so that it can be occupied by anyone. Let us call this action ‘release’. Thus, we need

to clearly define different types of beds to fully describe interactions between multiple types

of patients and beds under prediction uncertainty. We define five types of beds within the

proposed proactive bed allocation scheme:

1. Type EB beds represent those being prepared in server system s2 for Type EP or ET
P

patients. They include beds in the server queue.

2. Type EW beds represent those for which bed preparation processes are already completed.

These beds are waiting for Type ET
P or EF

N patients to occupy them.

3. Type OB beds represent those that are being prepared in server system s2 for Type O

patients. They include beds in the server queue.
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4. Type RB beds represent released beds that had once been Type EB beds and are still in

process at server s2. A Type-I error can change a Type EB bed to be Type RB.

5. Type RW beds represent either released beds that had once been Type EW or RB beds that

have finished their bed preparation/allocation processes.

2.4.4 Transitions Defined within the ED-IU Network

We now introduce six transitions that can fully specify the behaviors of the trivariate

Markov process as follows: 1) arrival of a Type EP patient at rate pλe; 2) arrival of a Type EF
N

patient at rate (1− q)rλe; 3) arrival of a Type O patient at rate λo; 4) completion of remaining

ED processes for a Type ET
P patient at rate

iq

µ1
when i Type EP patients are processed in server

s1; 5) completion of remaining ED processes for a Type EF
P patient at rate

i(1− q)
µ1

when i Type

EP patients are processed in server s1; and 6) completion of preparation/allocation of a bed at

server s2 at rate
1

µ2
. Instead of assuming that all servers and queues respond identically to the

transitions (typical of fork-join queue structures), our model entails more realistic transitions

between states depending on system states, which are presented in the next section.

2.4.5 Inpatient Bed Reservation Strategy

To guarantee the maximized positive influence of advance resource reservation in reducing

boarding delay of ED patients, not compromising the bed allocation efficiency for Type O

patients and the effort of server s2, we explicitly delineate a set of bed reservation rules that

govern bed reservation/release/cancellation for effective preparation/allocation of beds. The

designed rules strategically handle different patient arrivals and bed preparation states. The

rules are as follows:
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1. An early bed request is made only for Type EP patients.

2. ED and non-ED patients are served based on FIFO at the join server, s3, but according

to prepared bed types. An ED patient can only take a bed that is either reserved for ED

patients or released, and a non-ED patient can only occupy a bed that is not reserved for

ED patients.

3. Once a false positive occurs, then there are more beds that are either already reserved or

being reserved than necessary. In this case, a bed is released or removed according to a

bed preparation/allocation state at a given time.

(a) If all beds in the network are already prepared and ready, any one of them is re-

leased.

(b) If there are beds waiting in the queue of server system s2 to be prepared for ED

patients, the last one is removed from the queue (LIFO).

(c) If there is a Type EB bed being currently prepared without any Type EB bed in the

queue of server s2, the bed is released.

4. The type of a bed being prepared or already completed is decided towards the mini-

mization of the number of beds to be prepared by releasing or removing the bed if it is

allowed.

Consider Figure 8, where black and white circles represent ED patients and non-ED pa-

tients, respectively, and black and white squares represent beds prepared or being prepared

for ED patients, and non-ED patients, respectively. Initially there are one Type EP patient, two

Type O patients, two Type OB beds, and one Type EW beds. As soon as a false positive case

happens, the following events occur in order. As the Type EF
P patient leaves the network, the
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Figure 8: ED-IU Network Behaviors According to Bed Reservation Rules

Type EW bed is released and becomes Type RW (by rule (3–a)). Then, one Type O patient and

the Type RW bed is joined at server s3 (by rule (2)), and the Type OB bed in the queue of server

s2 is removed (by rule (4)). Eventually, a Type O patient and a Type OB bed remain in the

network.

All the rules above are designed based on actual bed allocation practices in industry but are

reasonably modified in the direction of the most efficient way to reduce unnecessary waiting

times and the wastage of effort to prepare beds. In fact, the rules guarantee the same amount

of workload on bed preparation with the reactive processes.

2.4.6 Representation of ED-IU Network State Space

To obtain the steady-state probability distribution of the number of patients and beds of

each type in the network, state space should include the following information due to state-

dependent transition rules: the number of Type EP patient, the sum of the numbers of Type

ET
P and Type EF

N patients, the numbers of Type O patients, the number of Type EB, EW, OB

and RB beds, and the permutation of the types of patients for which beds are being prepared

in server s2. Since this network incorporates the nine-dimensional state space with state-



www.manaraa.com

32

dependent transition rules, it is challenging to analytically solve the steady-state probability

distribution of the network. One alternative is using simulation, which may result in limited

insights. Instead, we propose representing the network as a trivariate Markov process by

imposing constraints that can aggregate and categorize the whole state space into manageable

subsets of state space.

It is worth noting that the properties of Burke’s output theorem enable reduction of the

complexity of the problem [22]. First, the arrival processes of Type EP and EN patients are

independent by the property of Poisson processes. Therefore, the departure process of Type EN

patients at server system s1 can also be analyzed independently. Moreover, the number of Type

EN patients in server s1 is not of interest as we pay attention to queue lengths at server s2 and

s3. Only when a Type EN patient turns into EF
N, entering to server s3, it could affect the queue

lengths at server s2 and server s3 based on the proactive bed reservation rules. According to

Burke’s output theorem, the departure of Type EN patients from server system s1 in the steady

state is also a Poisson process having rate (1− p)λe. Among the departures with rate (1− p)λe,

(1 − p)rλe of them proceed to server s3, which now become Type EF
N patients. Therefore,

unlike Type EP patients, without explicitly tracking the behavior of Type EN patients in server

system s1, we can achieve a complete model to obtain analytical solutions for the steady state

probability distribution of queue lengths at server s3.

The proposed queuing network is represented as a continuous-time Markov process on the

state space {(i, j, k) : 0 ≤ i ≤ N, 0 ≤ |j| ≤ N, −N ≤ k ≤ N}, where i is the number of

Type EP patients, j is a string that stores the composition and order of Type EB and Type OB

beds in server s2, consisting of elements in a patient type set PT = {e, o}, and k indicates the

number of either ED patients or reserved beds queued at server s3. For k > 0, k represents the
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number of ED patients waiting for Type EW beds, whereas for k < 0, |k| is the number of Type

EW or Type RW beds waiting to be occupied by Type ET
P, Type EF

N or Type O patients. To be

specific, Type EW beds can be taken only by Type ET
P or Type EF

N patients, while Type RW beds

can be assigned to any patients. Let |j| denote the number of elements in a string j, where

|je| and |jo| represent the numbers of e elements and o elements in j, respectively. We do not

need an element to represent Type RB beds in string j since the number of Type RB beds can

be inferred from i and k.

Due to the complexity of the system and the string-based representation of state vectors,

simple lexicographic ordering still does not work. For this reason, we introduce methods that

can categorize the whole state space into subsets of states so that transitions can be aggregated

and organized between different subsets of states. We define (1) ‘sets’ of states, i.e., H(n),

based on the number of bed requests remaining in the network, (2) ‘blocks’ based on the sign

of k within a set, (3) ‘groups’ based on the availability of different types of beds within a

block, and (4) ‘sequences’ based on transition patterns across groups (refer to Sections 2.5 and

2.8.2). The patterns in transitions in turn enable to find an analytical solution to the steady

state distribution by solving global balance equations. Without loss of generality, we focus

on the state space for the M/M/∞ −M/M/1 network case for clarity, and the rules can be

extended and applied to M/M/∞−M/M/s cases for any s.

To study the structure of the state space, we first define variables that represent the number

of entities under consideration. For instance, we simply let ETP and EB denote the number of

Type ET
P patients and Type EB beds in the network, respectively. Therefore, ETP = k−EFN when

k > 0, and EB = |k|−RB when k < 0. To more succinctly describe the network conditions, we

make sure that LPTQ = ETP +EFN +O and LBDQ = EW +RW to indicate the number of patients
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and beds that are queued at server s3 at any given time based on the definition of LPTQ (t) and

LBDQ (t) introduced in Section 2.3. A set of possible states satisfies the following conditional

equation and inequality based on the previous discussion on the state space representation:

|je| − i


= k if RB = 0 ∧RW = 0

> k otherwise

(2.3)

where the condition RB = 0 ∧RW = 0 indicate the case that there are no released beds in the

network at all. Hence, the number of patients who need beds and the number of beds being

prepared or already prepared are balanced, i.e., EP +ETP +EFN +O = EB +EW +OB, making

i+k = |je| hold true, where i+k represents the number of ED patients that require beds to be

prepared additionally, and |je| is the number of beds being currently prepared, corresponding

to the i+ k bed requests yet to be met. On the other hand, if there are released beds at server

s2 and s3, there are more beds than necessary (the second case of Equation 2.3). Because of

Type RB and Type RW beds existing among |je| number of e elements in j, i+ k < |je| is true.

Note that this case can happen only when k ≤ 0, since when k > 0, released beds cannot exist

in the network. When the second case of Equation 2.3 is met, |i+ k|+ |je| number of released

beds, i.e., |i+ k| units of Type RB and |je| units of Type RW beds, exist in the network. We note

that in the M/M/∞−M/M/s network, the maximum possible number of Type RB beds is s,

which are being prepared. In other words, if a Type EP patient turns to be a Type EF
P patient

and |je| > s, then the last e element in j is removed as stated by rule (3–b). Server s2 can

“cancel" the beds in queue once a false positive occurs since bed allocation processes for those

beds have not begun yet. This rule can be applied to M/M/∞−M/M/s for any s. The way

to indicate the number of Type O patients and Type OB beds is straightforward. It is always
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true that |jo| = OB = O. The first equality holds true by definition, and the second equality is

valid since the bed request for Type O patients is made only when the patients actually arrive

to the network given no prediction ability for the demand of Type O patients. Hence, there is

no need to specify the number of Type O patients in the network.

Now we define set H(n) to indicate all states that have n bed requests remaining in the

network. This process helps organize the whole state space so that transition patterns can be

explored by further categorizing the states. For example both
(
1,
〈
e
〉
, 0
)

and
(
0,
〈 〉
, −1

)
are

in set H(1), since in both states there is a single bed request remaining in the network whether

it is already prepared or not. Any states that satisfy the following equation can be categorized

into set H(n):

|j|+ |min(k, 0)| = n. (2.4)

Equation 2.4 ties up the states that contain n bed requests. With Equations 2.3 and 2.4, we

are able to represent the complete set of states and classify the states in each set according to

the transitional behaviors. Sections 2.5 and 2.8.2 provide a detailed explanation of the state

space.

2.5 State Groups and Transition Matrix Blocks

In this section, we discuss the partitioning of the generator matrix for the processes within

the proposed fork-join network into tractable blocks according to the state space defined in

Section 2.4.6. Partitioning greatly reduces the complexity of the transition behaviors and trans-

forms the matrix into separable blocks with common patterns that are manageable. Toward

this end, let Sν(X) denote the set containing all permutations with repetitions that choose ν

elements from a setX. For the number of permutations, we have |Sν(X)|=|X|ν . We categorize

the state space into two main blocks for each set n: Hk−(n) and Hk+(n), ∀n ≥ 1, where n is
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the number of remaining bed requests in the ED-IU network, as follows:

1. Hk−(n) = {(i, j, k) : Eq.(2.3) − (2.4), k < 0, j ∈ Sν(PT )} :⇔ ETP + EFN = 0 ∧ EW >

0 ∨RW > 0 ∨RB> 0, ∀n ≥ 1.

2. Hk+(n) = {(i, j, k) : Eq.(2.3) − (2.4), k ≥ 0, j ∈ Sν(PT )} :⇔ ETP + EFN ≥ 0 ∧ EW =

0 ∧RW = 0 ∧RB= 0, ∀n ≥ 1.

The blocks Hk−(n) include all states in which there are beds already prepared and waiting

for Type ET
P and Type EF

N patients. On the other hand, Hk+(n) represents the states for

which there are no beds waiting for patients, but there may be patients waiting for beds. The

main reason for partitioning the state space based on k is that the state space representations

bifurcate depending on the existence of Type RB and Type RW beds. As described in Figure 8,

false positive predictions can generate Type RB and Type RW beds in the system, for which

bed-patient assignment procedures are different than those for other beds, i.e., other beds are

‘reserved’ and taken only by corresponding type patients, but released beds can be occupied

in a FIFO manner regardless of their original types. Moreover, states in each block share the

same transition patterns over n. Therefore, we arrange the states according to the number of

remaining bed requests in the system, and partition the states into Hk−(n) and Hk+(n) in each

set. The partitioned generator matrix Q is given in (2.5).

Matrix Q in (2.5) involves 12 types of blocks, labeled from A to L. A state in block Hk−(n)

can transition into a state in blocks from Hk+(n − 2) to Hk−(n + 1), whereas a state in block

Hk+(n) can transition into a state in blocks Hk−(n − 1) through Hk+(n + 1). For instance,

states in block Hk−(n + 1) are transitioned to states in block Hk+(n − 1), following transition

patterns in A(n+1)(n−1), and there are no direct transitions betweenHk−(n+1) andHk−(n−1).

Each type of blocks share unique state patterns, enabling a tractable representation for the
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exponentially increasing state space. Hence, we compute transition rate matrix and solve

global balance equations to obtain steady-state distribution for all states, regardless of the size

of Q.

Q =



H(0) ... Hk− (n−1) Hk+ (n−1) Hk− (n) Hk+ (n) Hk− (n+1) Hk+ (n+1) ... Hk+ (N)

H(0)

...
. . .

. . .
. . .

Hk− (n−1) . . .D(n−1)(n−1) E(n−1)(n−1) F(n−1)(n)

Hk+ (n−1) . . . I(n−1)(n−1) J(n−1)(n−1) K(n−1)(n) L(n−1)(n)

Hk− (n) . . . B(n)(n−1) C(n)(n−1) D(n)(n) E(n)(n) F(n)(n+1)

Hk+ (n) . . . G(n)(n−1) H(n)(n−1) I(n)(n) J(n)(n) K(n)(n+1) L(n)(n+1)

Hk− (n+1) A(n+1)(n−1) B(n+1)(n) C(n+1)(n) D(n+1)(n+1) E(n+1)(n+1) . . .

Hk+ (n+1) G(n+1)(n) H(n+1)(n) I(n+1)(n+1) J(n+1)(n+1) . . .

...
. . .

. . .

Hk+ (N)
. . . J(N)(N)



.

(2.5)

We further partition each block to fully specify the state space and transition patterns.

Depending on the availability of prepared beds and their types, Hk−(n), ∀n can be categorized

into n+2 groups.

1. H1
k−(n) = {(i, j, k) : 0 ≤ i < n, j = , k = −n}, ∀n ≥ 1, for which we have EP = i∧LPTQ =

EB = OB = RB = 0 ∧ EW = i ∧ RW = n − i,∀n ≥ 1. The states in group H1
k−(n) have

more than necessary beds for ED patients who have sent bed requests, and redundant

reserved beds are released. There is not any non-ED patients, and no more beds need to

be prepared.
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2. H2
k−(n) = {(i, j, k) : 0 ≤ i < n, j =

〈
e
〉
, k = −n + 1}, ∀n ≥ 1, where we have EP =

i ∧ LPTQ = EB = OB = 0 ∧RB = 1 ∧ EW = n− 1 ∧RW = n− i− 1. The states in group

H2
k−(n) have also more than necessary beds for ED patients who have sent bed requests,

and redundant reserved beds are released. There is not any non-ED patients. The bed

for which the preparation process already started, is released.

3. H3+ν
k− (n) = {(i, j, k) : i = |je|+ |k|, j ∈ Sν(PT ), k = −n+ ν} for n ≥ 2, j ∈ Sn(PT ) and

0 ≤ ν ≤ n − 1, for which we have EP = i ∧ LPTQ = O = n − EP ∧ EB = |je| ∧ OB =

k ∧ RB = 0 ∧ EW = n − ν ∧ RW = 0. The states in group H3+ν
k− (n) have ν beds being

prepared for ED and non-ED patients in the order of bed request arrivals. The number

of patients who have sent bed requests equals to the sum of the number of beds being

prepared and already reserved for each type of patients. Hence, there is no redundant

beds.

Groups H1
k−(n), H2

k−(n), and H3+ν
k− (n),∀ν ≤ n−1 satisfy the requirements of block Hk−(n)

and cover all states in blockHk−(n) for each n. For instance, the states in each group of Hk−(4)

are as follows:

• H1
k−(4) = {(0, ,−4), (1, ,−4), (2, ,−4), (3, ,−4)}.

• H2
k−(4) = {(0,

〈
e
〉
,−3), (1,

〈
e
〉
,−3), (2,

〈
e
〉
,−3), (3,

〈
e
〉
,−3)}.

• H3
k−(4) = {(4, ,−4)}.

• H4
k−(4) = {(4,

〈
e
〉
,−3), (3,

〈
o
〉
,−3)}.

• H5
k−(4) = {(4,

〈
ee
〉
,−2), (3,

〈
oe
〉
,−2),

(
3,
〈
eo
〉
,−2

)
,
(
2,
〈
oo
〉
,−2

)
}.
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• H6
k−(4) =

{(
4,
〈
eee
〉
,−1

)
,
(
3,
〈
oee
〉
,−1

)
,
(
3,
〈
eoe
〉
,−1

)
,
(
2,
〈
ooe
〉
,−1

)
,
(
3,
〈
eeo
〉
,−1

)
,(

2,
〈
oeo
〉
,−1

)
,
(
2,
〈
eoo
〉
,−1

)
,
(
1,
〈
ooo
〉
,−1

)}
.

Considering the permutations in j for groups H3+ν
k− (n), the number of states in block Hk−(n)

is calculated using the following formula:

Υ(n) =

n∑
j=1

j∑
i=1

(j − 1)!

(j − i)!(i− 1)!
+ 2n =

n∑
j=1

2j−1 + 2n, ∀n ∈ Z+,

Υ(0) = 1.

(2.6)

The blocks Hk+(n),∀n are partitioned into |PT |n groups as defined as follows:

Hτ
k+(n) = {(i, j, k) : i = |je| − k, j ∈ Sn(PT ), 0 ≤ k ≤ |je|}, ∀n ≥ 1 and ∀j ∈ Sn(PT ),

where we have EP = i∧ETP +EFN = k∧EB = |je| ∧O = OB = |jo| = n−|je| ∧RB = 0∧LBDQ =

0, and where τ is an index corresponding to the elements of Sn(PT ). For example, we have

S2(PT ) = {
〈
ee
〉
,
〈
eo
〉
,
〈
oe
〉
,
〈
oo
〉
} and τ ∈ {1, 2, 3, 4}, for n = 2. The groupsHτ

k+(n),∀τ and ∀n

involve states that have τ th element of set Sn(PT ) as the ordered composition of beds being

prepared in server s2. By definition of Hk+(n), RB and RW are zero. The states in each group

in block Hk+(2) are as follows:

• H1
k+(2) = {

(
2,
〈
ee
〉
, 0
)
,
(
1,
〈
ee
〉
, 1
)
,
(
0,
〈
ee
〉
, 2
)
}.

• H2
k+(2) = {

(
0,
〈
eo
〉
, 1
)
,
(
1,
〈
eo
〉
, 0
)
}.

• H3
k+(2) = {

(
0,
〈
oe
〉
, 1
)
,
(
1,
〈
oe
〉
, 0
)
}.

• H4
k+(2) = {

(
0,
〈
oo
〉
, 0
)
}.
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Based on the pattern of state expansion, the number of states in block Hk+(n) is calculated

with the following formulation:

Φ(n) =
n+1∑
j=1

j∑
i=1

n!

(n− i+ 1)!(i− 1)!,
∀n ∈ Z≥0. (2.7)

The summation of Υ(n) and Φ(n) gives the total number of states in blocksHk−(n) and Hk+(n).

The total number of states in the network that allows N bed requests is formulated in (2.9).

X(n) = Υ(n) + Φ(n), ∀n ∈ Z≥0. (2.8)

Σ(N) =
N∑
n=0

X(n). (2.9)

As revealed in (2.6)–(2.9), the state space for n grows exponentially (approximately ∼ 2.33n),

and the total number of states for N reaches to
∑N

n=1 2.33n. More detailed description of the

transition patterns between different state sequences is given in 2.8.2.

Once the transition rate matrix is obtained, we identify a proper truncation set of gener-

ator Q, which is called the truncation parameter [46], to solve the global balance equations

and ensure a reasonable accuracy. The decision on the truncation set is made by finding the

minimum n that stabilizes changes in E(EW ), E(O), and E(LBDQ ).

2.5.1 Multiple Inpatient Unit Case

In general, admissions from the ED to IUs are interdependent, where the sum of admission

rates to individual IUs equals to the total rate of admissions to the hospital. Moreover, a Type

EF
P patient at an IU can be admitted to another IU as a Type EF

N patient. Thanks to Burke’s

output theorem [22], the case of multiple IUs receiving proactive bed requests from the ED can
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also be modeled and solved analytically through decomposition. Let Ω denote a set containing

all dispositions. The following equations express the relationships between different units, and

they are used to model the bed allocation operations over multiple IUs:

(a)
∑
ω∈Ω

pω =
∑
ω∈Ω

Zω = 1,

(b) pωqω + rω(1− pω) = Zω ∀ω ∈ Ω,

(c)
∑
ω∈Ω

pω(1− qω) =
∑
ω∈Ω

rω(1− pω),

(2.10)

where pω represents the probability of sending a bed request or discharge signal to an arbitrary

unit ω, while Zω symbolizes the percentage of Type E patients who are actually sent to ω after

ED treatment. Similarly, qω and rω at unit ω correspond to q and r in the single IU case,

respectively. Equation 2.10(a) states that a disposition decision prediction is made for every

ED patient and that each ED patient is assigned to its actual single disposition destination at

the end of ED treatment. Equation 2.10(b) is a general form of the equation of Z in Section

2.4.2. Especially, when the rate of proactive signals sent to ω is the same with the rate of

actual disposition to ω, Equation 2.10(b) becomes equivalent to pω(1 − qω) = rω(1 − pω) for

all dispositions in Ω, indicating the local equality between patient inflow generated by false

negatives and patient outflow caused by false positives at each disposition in Ω. Equations

2.10(a)–(b) guarantee the validity of the global equality (Equation 2.10(c)) for patient flow

over all dispositions even without the local equality since Equation 2.10(a) always holds true.

In other words, Equation 2.10(c) requires that the total amount of Type I errors and that of

Type II errors should be always the same over set Ω. In addition, even though there are multiple

IUs through which patients move according to their prediction results, the patient flow in any
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ED-IU network is still feed-forward since a patient would not visit the same server or queue

more than one time during their admission processes. Therefore, Equation 2.11 holds true for

the independence of queue lengths:

P (ω1 = ξ1, ω2 = ξ2, . . . , ωδ = ξδ) =
δ∏
i=1

Pi(ωi) (2.11)

where we assume δ dispositions in total, and ξi represents a queue length at ωi.

2.6 Analysis of Model

In this section, we discuss the effectiveness of the proposed proactive bed allocation ap-

proach. Our primary performance measure is waiting time of the both types of patients. We

analyze the system under two main scenarios: Ideal and Realistic. Under the ideal scenario,

we assume that IU beds are dedicated to ED patients and ED disposition decisions are perfect.

Hence, ED patients are the sole beneficiary, and the results report the maximum potential im-

provement for ED patients. The purpose of studying the ideal case is to explicitly and concisely

show the fundamental impact of the proposed bed allocation strategy. Whereas, under the

realistic scenario, we assume that disposition predictions for ED patients are error prone, and

the IU serves both ED and non-ED patients. We also quantify the impact of prediction quality

under various operational settings.

2.6.1 Ideal: IU Dedicated to ED Patients with Perfect Disposition Decision Prediction

For the ideal scenario, we assume that the arrival rate to the ED is 10 patients/hour and the

admission rate to IU (ω) is 0.4 patients/hour, mimicking the activity at the studied hospital.

For various bed request signal lead-times and bed preparation service times, the expected bed

allocation delay is displayed in Figure 9. We observe that when the proactive bed allocation
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Figure 9: Impact of Proactive Bed Requests for ED patients under a Dedicated IU.

scheme is implemented with a bed request signal lead-time of 1.5 hours for the case where

average bed preparation service time is 1 hour, the boarding delay can be reduced from 100

minutes under the reactive strategy to 47 minutes (a 53% reduction). As another example,

an IU with 40 minutes of bed preparation service time subject to a bed request signal lead-

time of 1 hour experiences the same boarding delay (22 minutes) as an IU operating with just

20 minutes of bed preparation service time. These are significant reductions in BAD enabled

through proactive bed request signals. As shown in Figure 9, applying proactive coordination

to a busier ED-IU network leads to larger benefits in boarding delay reduction.

2.6.2 Realistic: ED and Non-ED Patient Admissions with Imperfect Disposition Decision

Prediction

We conduct our analysis under the setting where the average bed preparation time is 1

hour, and there are the equal number of admissions to the IU from both the ED and outside
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Figure 10: Impact of Proactive Bed Requests in Realistic Settings

ED (0.2 admissions/hour from each, totaling 0.4 admissions/hour) on average to study the

effect of erroneous disposition decision predictions on the performance measures. We assume

that the frequency of proactive bed requests is the same with the actual admission rate from

the ED, i.e., Z = p, even though individual predictions could be wrong. Figure 10(a) and

(b) display BADs for ED and non-ED admissions respectively, under various true positive rates

(q in Figure 7). As the true positive rate gets smaller, the impact of early bed allocation for

ED patients decreases, where the value of prediction quality (or the cost of errors) can be

approximated by the reduction in the BADs in Figure 10(a). In the experimental setting (the

same rate of admissions from the ED and non-ED), the released beds are taken half of the

time by Type O patients with no delay, resulting in overall BAD reduction for Type O patients

(Figure 10(b)). Hence, BAD for Type O patients under the proposed proactive bed allocation

approach is bounded by the delay in the reactive case. Moreover, the delay for Type O patients

is reduced as a true positive rate decreases and bed request signal lead-time increases, but the
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amount of reduction quickly saturates as bed request signal lead-time increases. It is because

the chance for Type O patients to take Type Rb or Rw beds rarely depends on how early those

beds are available (due to making no reservations for Type O patients).

2.6.3 Impact of Quality of Disposition Decision Prediction on BAD Reduction

Figure 11(a) demonstrates the effect of prediction quality on the bed allocation delay re-

duction for various utilization rates ρ2

(
=

Zλe + λo
1
µ2

)
. The plots display the differences

in bed allocation delays for perfect prediction (q = 1), and completely erroneous prediction

(q = 0), i.e., BADq=1−BADq=0, assuming Z = p. We observe that with a lower ρ2, the impact

of prediction quality saturates faster as bed request signal lead-time gets longer, i.e., not much

benefit from sending bed requests very early. Better individual prediction quality has a greater

influence even with a longer bed request signal lead-time when the ED-IU network operates

under higher utilization.

Figure 11(b) shows the impact of proactive bed preparation on ED and non-ED patients
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Figure 11: Influence of Disposition Decision Prediction Quality on BAD Reduction
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as well as the number of waiting beds for bed preparation service time of 1 hour and bed

signal lead-time of 1.5 hours, depending on different levels of disposition prediction quality.

We assume an equal number of admissions (0.2 admissions/hour) from the ED and outside ED.

For the imperfect disposition prediction cases, ED and non-ED patients compete for available

beds. While non-ED patients benefit from false bed allocations, the number of beds waiting for

patients increases as the prediction quality decreases.

2.6.4 Timeliness of Proactive Bed Requests with Progressive Prediction Results

Finally, we present the most realistic cases (inspired by analyzing data from the case study

hospital) to see how the BAD for ED patients can vary depending on patient disposition pre-

diction quality that evolves progressively throughout the ED care giving cycle. In particular,

we identify four essential discrete care giving stages in the ED, i.e., triage, ordering a first set

of lab tests, receiving the results of the first set of lab tests, and the final disposition decision.

While there can be more steps between any two contiguous stages, these four intervals are

fairly well-established and common for most ED patients. The care giving stages, the average

time spent at each stage, as well as the results (admission prediction, precision and sensitiv-

ity) of the predictive models are displayed in Table 4, where the Logistic regression predictive

models are built using the EHR data from the studied hospital. Therefore, unlike the previous

analyses, the rates of proactive bed requests are determined from the actual prediction mod-

els, which turn out to be strictly less than the admission rates under all cases, denoted p/Z.

All other parameters remain the same with those in Section 2.6.2. As a patient goes through

more ED care giving stages, there is growing clinical information to improve the reliability of

disposition decision prediction, which leads to increasing performance as reported in Table 4.

However, a delayed/postponed bed request signal can also compromise the timeliness of



www.manaraa.com

47

Table 4: Patient Disposition Prediction Quality Evolution and Its Impact on BAD Reduction

Results of Disposition

(a) IU ω1 Triage First lab orders first lab orders decision

Bed request signal lead-time 250min 200min 145min 0min

p/Z 0.50 0.78 0.93 1.00

q (precision) 0.24 0.31 0.42 1.00

Sensitivity 0.12 0.24 0.39 1.00

BAD for ED patients 63min 53min 52min 100min

Results of Disposition

(b) IU ω2 Triage First lab orders first lab orders decision

Bed request signal lead-time 250min 200min 145min 0min

p/Z 0.81 0.82 0.84 1.00

q (precision) 0.49 0.52 0.56 1.00

Sensitivity 0.40 0.43 0.47 1.00

BAD for ED patients 42min 47min 53min 100min

bed requests. Table 4 reveals how this trade-off can actually affect BAD reduction, comparing

two distinct IUs that have different trajectories of prediction quality progress. IU ω1 represents

a telemetry unit (TU) that does not seem to have distinctive clinically actionable information

at triage (in vital signs, chief complaint, and so on) to make effective disposition predictions,

but waiting for additional clinical information from downstream stages leads to improved pre-

dictive capability for TU patients. As shown in Table 4(a), due to the clear improvement in

prediction quality during the ED care giving cycle, making bed request decisions later can ac-

tually reduce overall BAD in IU ω1, overcoming the negative influence of postponed decisions.

On the contrary, as shown in Table 4(b), IU ω2 represents an intensive care unit (ICU) for

which the patients have far more distinctive features right at triage to generate fairly good
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prediction results within about 20 minutes of patient arrival to the ED. In addition, the infor-

mation gained during downstream care giving stages is not significant, and there is no benefit

in delaying proactive bed request signals for these patients by waiting to see what lab work is

being ordered or waiting for their results.

2.7 Discussion and Conclusion

To remedy the growing overcrowding being witnessed in EDs and the negative conse-

quences associated with it, we propose a novel early task initiation scheme that facilitates

proactive IU bed allocations for ED patients projected to be admitted into the hospital. The

proposed scheme does not require any major modifications in care services both in the ED and

the IUs or their support services. Our results suggest that making proactive bed reservations

for ED patients can significantly reduce bed allocation delay for ED patients (and in turn ED

crowding) without compromising the bed allocation efficiency for non-ED patients. The results

from our study led the studied hospital to implement parts of the proposed early task initiation

strategy within its ED-IU network. In the initial phase of the implementation, the hospital

started to send bed requests before the completion of admission approvals for a representative

IU. The hospital is also planning to fully implement the proposed strategy for IU bed allocation.

The proposed proactive bed allocation approach can be studied further for operationaliza-

tion. First, as can be seen from Figure 2, the ED-IU network is a dynamic system with varying

patient arrival and discharge rates, requiring modifications to our model setting parameters.

While a simulation study can be pursued based on the detailed coordination strategy proposed

in this study, for all practical purposes, it is safe to assume that the entire ED-IU network sys-

tem can be effectively characterized into a relatively small number of distinct steady system

states (each spanning one to several hours). Once characterized, the ED should operate the
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advance bed request signals based on the optimal policy that corresponds to the parameters

representing the matching system state.

Second, the proposed coordination scheme can enable different types of process modifica-

tions and improvements in the ED-IU network. For instance, when bed preparation servers are

shared as a completely pooled server system over all IUs, a hospital can strategically deploy its

servers according to the predicted IU bed demand. For bed preparation servers that cover IUs

requiring different bed or equipment types, deployment of the servers becomes a prioritiza-

tion problem. In this setting, proactive bed allocation schemes can be utilized for proactively

directing the servers to the most appropriate IUs. While different settings exist, this study

provides core ideas, rigorous representation, and operational impact analysis for proactive bed

allocation schemes.

Finally, even though this study focuses on a health care service network setting, it adds

to the general body of literature investigating service systems that can benefit from proactive

resource coordination utilizing prediction outcomes (e.g., just-in-time logistics, manufacturing,

and project management). The implementation of early task initiation in complex service

systems should become a promising area of scientific research and exploration for both industry

and academia.

2.8 Appendix

This section provides additional discussion and details surrounding the proposed modeling

methodology and case study. First, we demonstrate that the bed preparation server time does

indeed follow an exponential distribution at the studied hospital. Second, we discuss means

for identification and organization of state groups and transition matrix blocks for obtaining

analytical solutions in large scale ED-IU network settings. Finally, we introduce a matrix that
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represents the state sequences within each state group.

2.8.1 Exponentially Distributed Bed Preparation Service Time

As noted in Section 2.2, BAD (i.e., bed allocation delay) denotes the total waiting time

in the bed preparation server (s2). Although the main task processed at server s2 is bed

preparation, BAD also includes the time to communicate with the bed preparation servers to

deploy them, travel time for servers to move to the assigned bed location, and time to finish

duties associated with any prior assignments (i.e., bed cleaning requests might queue up).

We assume that the bed preparation server (server s2) takes exponentially distributed service

time with mean µ2. For justification, Figure 12 reports the cumulative distributions of inter-

departure times from server s2 for two representative inpatient units (internal medicine and

pulmonary units) at the target hospital on weekdays for two 2-hour intervals during severe

ED census and boarding. The inter-departure plots indeed resemble exponential distributions

albeit with varying rates across units. Note that the departure process in a stationary M/G/s

queuing system approaches a Poisson process as s → ∞. In particular, as shown by [38] and

[39], an M/G/s (for any s ≥ 1) queue has a Poisson departure process if and only if it is a

steady-state queue satisfying that the service times are exponential (G = M) when the service

discipline is FIFO. Hence, it is reasonable to assume that the bed preparation service times are

exponentially distributed.

2.8.2 Representation of State Sequences

In Section 2.5, n+2 and 2n groups of states are introduced for blocksHk−(n) and Hk+(n), ∀n,

respectively. Then, states within each group are sorted in a lexicographic order for i, the first

element on the state space, if |je| = |jo| = 0, i.e., there is no need to order according to a string
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Figure 12: Cumulative Distributions of Inter-departure Time at Server s2 and Exponential

Distribution for Select Inpatient Units

j. However, when |je| 6= 0 ∨ |jo| 6= 0, states are first ordered in a colexicographic order for j,

assuming e < o. For instance, elements in S2(PT ) are ordered using the colexicographic order-

ing as follows: ee < oe < eo < oo. Moreover, states that have the same j, are further ordered

anti-lexicographically for i. The ordering methods are implemented such that all possible state

transitions are conveniently tracked through the regular sequence of states. In particular, the

colexicographic order applied for j decides the transition patterns that are related to the num-

ber of beds being prepared for Type EP, ET
P, and EF

N patients. Since states in each group are

first ordered based on the elements in j due to their great influence in the network behavior,
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transition patterns also reflect the order. Considering S2(PT ) = {
〈
ee
〉
,
〈
oe
〉
,
〈
eo
〉
,
〈
oo
〉
}, the

number of e elements in each string are 2, 1, 1, 0, respectively. The pattern of the numbers of

e elements in strings in any set Sn(PT ) can be derived from the colexicographic order. Thus,

the ‘sequence of the number of e elements in element strings’ is given by (0), (1, 0), (2, 1, 1,

0), (3, 2, 2, 1, 2, 1, 1, 0), . . ., and can be represented by the following matrix Ψ:

Ψ =



(α, n) 0 1 2 3 ...

0 0 0 0 0 . . .

1 0 1 2 3 . . .

2 0 0 1 2 . . .

3 0 0 1 2 . . .

4 0 0 0 1 . . .

5 0 0 0 2 . . .

6 0 0 0 1 . . .

7 0 0 0 1 . . .

8 0 0 0 0 . . .
...

...
...

...
...

. . .



. (2.12)

The first row is added as a dummy for simpler expression of state patterns.

As introduced in Section 2.4.4, the state transitions are categorized into six groups. Below,

we list all the state transitions grouped by the transition type. Each sequence corresponds to

only one of the groups and subgroups exclusively over increasing n, where the functions Υ(n)

and Σ(n) are introduced in (2.6) and (2.9), respectively.
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Table 5: Transitions for the arrival of a Type EP patient at rate pλe.

Index of the initial state Index of the final state

1 Σ(n− 1) + n− 1 Σ(n− 1) + n ∀n ≥ 1

2 Σ(n− 2) + n− 1 Σ(n− 1) + 2n+ 1 ∀n ≥ 2

3 Σ(n− 1) + 2n Σ(n− 1) + 2n+ 1 ∀n ≥ 2

4 Σ(n− 1) +m Σ(n− 1) +m+ 1 ∀n ≥ 2, 0 ≤ m ≤ n− 2

5 Σ(n− 1) + 2n− 1 Σ(n− 1) + 2n ∀n ≥ 2

6 Σ(n− 1) + n+m+ 1 Σ(n− 1) + n+m+ 2 ∀n ≥ 3, 0 ≤ m ≤ n− 3

7 Σ(n− 2) + 2(n− 1) +

m+1∑
α=1

2α−1 + l Σ(n− 1) + 2n+

m+2∑
α=1

2α−1 + l ∀n ≥ 3, 0 ≤ m ≤ n− 3, 0 ≤ l ≤ 2m+1 − 1

8 Σ(n− 2) + Υ(n− 1) +
m∑
α=0

Ψ(α,n) +l Σ(n− 1) +Υ(n) +m+
m∑
α=0

Ψ(α,n) +l ∀n ≥ 1, 0≤m ≤ 2n−1−1, 0 ≤ l ≤ Ψ(m+1,n)−1

Table 6: Transitions for the arrival of a Type EF
N patient at rate (1− q)rλe.

Index of the initial state Index of the final state

1 Σ(n) Σ(n− 1) ∀n ≥ 1

2 Σ(n) + n Σ(n− 1) + n ∀n ≥ 1

3 Σ(n− 1) + n Σ(n− 1) + 2n+ 1 ∀n ≥ 2

4 Σ(n) + 2(n+ 1) Σ(n− 1) + 2n+ 1 ∀n ≥ 2

5 Σ(n) +m+ 1 Σ(n− 1) +m+ 1 ∀n ≥ 2, 0 ≤ m ≤ n− 2

6 Σ(n) + n+ 2 Σ(n− 1) + n+ 1 ∀n ≥ 2

7 Σ(n) + 2n+ 1 Σ(n− 1) + 2n ∀n ≥ 2

8 Σ(n) + n+m+ 3 Σ(n− 1) + n+m+ 2 ∀n ≥ 3, 0 ≤ m ≤ n− 3

9 Σ(n− 1) + 2n+

m+1∑
α=1

2α−1 + l Σ(n− 1) + 2n+

m+2∑
α=1

2α−1 + l ∀n ≥ 3, 0 ≤ m ≤ n− 3, 0 ≤ l ≤ 2m+1 − 1

10 Σ(n−2) +Υ(n−1) +
m∑
α=0

Ψ(α,n) +l Σ(n−1) +Υ(n) +m+
m∑
α=0

Ψ(α,n) +l +1 ∀n ≥1, 0≤m≤ 2n−1−1, 0 ≤ l ≤ Ψ(m+1,n)−1

11 Σ(n− 1) + 2n+

n−1∑
α=1

2α−1 +m Σ(n− 1) +Υ(n) +m+
m∑
α=0

Ψ(α,n) ∀n ≥ 2, 0 ≤ m ≤ 2n−1 − 1
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Table 7: Transitions for the arrival of a Type O patient at rate λo.

Index of the initial state Index of the final state

1 Σ(n) Σ(n− 1) ∀n ≥ 1

2 Σ(n) + n Σ(n− 1) + n ∀n ≥ 1

3 Σ(n) +m+ 1 Σ(n− 1) +m+ 1 ∀n ≥ 2, 0 ≤ m ≤ n− 2

4 Σ(n) + n+ 2 Σ(n− 1) + n+ 1 ∀n ≥ 2

5 Σ(n− 2) + n− 1 Σ(n− 1) + 2n+ 2 ∀n ≥ 3

6 Σ(n− 1) + 2n Σ(n− 1) + 2n+ 2 ∀n ≥ 3

7 Σ(n) + 2n+ 1 Σ(n− 1) + 2n ∀n ≥ 2

8 Σ(n) + n+m+ 3 Σ(n− 1) + n+m+ 2 ∀n ≥ 3, 0 ≤ m ≤ n− 3

9 Σ(n− 2) + 2(n− 1) +

m+1∑
α=1

2α−1 + l Σ(n− 1) + 2n+

m+2∑
α=1

2α−1 + 2m+1 + l ∀n ≥ 3, 0 ≤ m ≤ n− 3, 0 ≤ l ≤ 2m+1 − 1

10 Σ(n− 2) + Υ(n− 1) +m Σ(n− 1) + Υ(n) + 2n−1 +

2n−1∑
α=1

Ψ(α, n) +m ∀n ≥ 1, 0 ≤ m ≤ Φ(n− 1)− 1

Table 8: Transitions for the completion of remaining ED processes for a Type ET
P patient at

rate iqµ when i Type EP patients are processed in server s1.

Index of the initial state Index of the final state

1 Σ(n) + 1 Σ(n− 1) ∀n ≥ 1

2 Σ(n) + n+ 1 Σ(n− 1) + n ∀n ≥ 1

3 Σ(n) + 2(n+ 1) + 1 Σ(n− 1) + 2n+ 1 ∀n ≥ 2

4 Σ(n) +m+ 2 Σ(n− 1) +m+ 1 ∀n ≥ 2, 0 ≤ m ≤ n− 2

5 Σ(n) + n+ 3 Σ(n− 1) + n+ 1 ∀n ≥ 2

6 Σ(n) + 2(n+ 1) + 2 Σ(n− 1) + 2n+ 2 ∀n ≥ 3

7 Σ(n) + 2n+ 2 Σ(n− 1) + 2n ∀n ≥ 2

8 Σ(n) + n+m+ 4 Σ(n− 1) + n+m+ 2 ∀n ≥ 3, 0 ≤ m ≤ n− 3

9 Σ(n) + 2(n+ 1) +

m+2∑
α=1

2α−1 + l Σ(n− 1) + 2n+

m+2∑
α=1

2α−1 + l ∀n ≥ 3, 0 ≤ m ≤ n− 3, 0 ≤ l ≤ 2m+2 − 1

10 Σ(n−1) +Υ(n) +m+

m∑
α=0

Ψ(α,n) +l Σ(n−1) +Υ(n) +m+

m∑
α=0

Ψ(α,n) +l +1 ∀n≥1, 0≤m≤ 2n − 2, 0≤ l≤Ψ(m+ 1,n)− 1

11 Σ(n) + 2(n+ 1) +

n∑
α=1

2α−1 +m Σ(n− 1) + Υ(n) +m+

m∑
α=0

Ψ(α, n) ∀n ≥ 1, 0 ≤ m ≤ 2n − 1
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Table 9: Transitions for the completion of the preparation/allocation of a bed at server s2 at

rate θ.

Index of the initial state Index of the final state

1 Σ(n− 1) + 2n+ 1 Σ(n− 1) + n ∀n ≥ 1

2 Σ(n) + 2(n+ 1) + 2 Σ(n− 1) + n ∀n ≥ 1

3 Σ(n− 1) + 2n+ 3 Σ(n− 1) + 2n+ 1 ∀n ≥ 2

4 Σ(n) + 2(n+ 1) + 4 Σ(n− 1) + 2n+ 1 ∀n ≥ 2

5 Σ(n− 1) + n+m+ 2 Σ(n− 1) +m+ 1 ∀n ≥ 2, 0 ≤ m ≤ n− 2

6 Σ(n− 1) + 2n+ 5 Σ(n− 1) + 2n+ 2 ∀n ≥ 3

7 Σ(n) + 2(n+ 1) + 6 Σ(n− 1) + 2n+ 2 ∀n ≥ 3

8 Σ(n− 1) + Υ(n) + 2
m∑
α=0

Ψ(α, n) +m Σ(n− 1) + 2n+

n−1∑
α=1

2α−1 +m ∀n ≥ 3, 0 ≤ m ≤ 2n−1 − 1

9 Σ(n− 1) + 2n+

m+3∑
α=1

2α−1 + 2l Σ(n− 1) + 2n+

m+2∑
α=1

2α−1 + l ∀n ≥ 4, 0 ≤ m ≤ n− 4, 0 ≤ l ≤ 2m+2 − 1

10
Σ(n) + Υ(n+ 1) + 2

m∑
α=0

Ψ(α, n+ 1) Σ(n− 1) + Υ(n) +
m∑
α=0

Ψ(α, n+ 1) + l k ∈ {0, 1}, ∀n ≥ 1,

+m+ kΨ(m+ 1, n+ 1) + l + 1 0 ≤ m ≤ 2n − 1, 0 ≤ l ≤ Ψ(m+ 1, n)
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Table 10: Transitions for the completion of remaining ED processes for a Type EF
P patient at

rate i(1− q)µ when i Type EP patients are processed in server s1.

Index of the initial state Index of the final state

1 Σ(n− 1) + 1 Σ(n− 1) ∀n ≥ 1

2 Σ(n) + 2(n+ 1) + 3 Σ(n− 1) + 2n+ 1 ∀n ≥ 2

3 Σ(n− 1) +m+ 2 Σ(n− 1) +m+ 1 ∀n ≥ 2, 0 ≤ m ≤ n− 2

4 Σ(n− 1) + n+ 2 Σ(n− 1) + n+ 1 ∀n ≥ 2

5 Σ(n) + 2(n+ 1) + 4 Σ(n− 1) + 2n+ 2 ∀n ≥ 3

6 Σ(n) + 2(n+ 1) + 5 Σ(n− 1) + 2n+ 2 ∀n ≥ 3

7 Σ(n+ 1) + 2(n+ 2) + 6 Σ(n− 1) + 2n+ 2 ∀n ≥ 3

8 Σ(n− 1) + 2n+ 1 Σ(n− 1) + 2n ∀n ≥ 2

9 Σ(n) + 2(n+ 2) Σ(n− 1) + 2n ∀n ≥ 2

10 Σ(n− 1) + n+m+ 3 Σ(n− 1) + n+m+ 2 ∀n ≥ 3, 0 ≤ m ≤ n− 3

11 Σ(n)+2(n+1)+

4∑
α=1

2α−1−2k+1+

m+2∑
α=2

2α+1+l−8 Σ(n)+2n+

3∑
α=1

2α−1− k +

m+1∑
α=1

2α+1+l−5 ∀k∈{0,1}, n≥3, 0 ≤m≤ n−3, 0≤ l≤k

12 Σ(n)+2(n+1) +

k+1∑
α=1

2α−1+

m+k∑
α=k

2α+1−2k+1+l Σ(n−1)+2n+

k∑
α=1

2α−1+

m+k−1∑
k−1

2α+1+2k+l ∀k≥2, n≥k + 1, 0≤m≤ n−k−1, 0≤ l≤2k−1

13 Σ(n+ 1) + 2(n+ 2) +

m+3∑
α=1

2α−1 − 1 Σ(n− 1) + 2n+

m+2∑
α=1

2α−1 − 1 ∀n ≥ 2, 0 ≤ m ≤ n− 2

14 Σ(n+ 1)− 3 Σ(n)− 1 ∀n ≥ 1

15
Σ(n) + Υ(n+ 1) +

2n+1−2k∑
α=0

Ψ(α,n+2) Σ(n−1) +Υ(n)+

2n−2k−1∑
α=0

Ψ(α,n+1) 2 ≤ k ≤ N, ∀n ≥ k − 1,

+

m∑
α=0

Ψ(α, k + 1) + l +

m∑
α=0

Ψ(α, k) + l 0≤m≤ 2k−1−1, 0≤ l≤Ψ(m+ 1,k−1)

16 Σ(n+ 1) + Υ(n+ 2)− 1 Σ(n)− 1 ∀n ≥ 1
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CHAPTER 3: PREDICTING EMERGENCY DEPARTMENT DISPOSITION
DECISION FOR EARLY RESOURCE ALLOCATION

3.1 Introduction

While many studies have identified overcrowding as one ot the main issues in the ED

management [66, 52, 54, 80], boarding has been identified as a factor contributing to ED

crowding [77, 29, 12]. To alleviate crowding in the ED, various approaches that streamline

the admission process from the ED have been suggested including the adoption of fast-track

units, advanced patient triage strategy, and the implementation of six-sigma and lean programs

[60, 57, 19, 92, 85, 34, 89, 90, 7, 67, 36, 51]. The latest data from the Centers for Medicare &

Medicaid Services (CMS) shows median boarding times in across states and territories in U.S.

in 2016 as Figure 13, with a median boarding time of 2 hours and 16 minutes [31].

The motivation of this study is the modeling of ED disposition decision prediction that can

lead to the proactive coordination of resource preparation, e.g., allocation and management

of inpatient beds. Predictive analytics is certainly receiving a great deal of attention in recent

years for improving healthcare service quality [5].In the context of ED operations manage-

ment, while there is good progress with ED patient admission prediction modeling research
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[78, 14, 96, 21], the models are lacking in their resolution in order to allow operational-

ization of prediction outcomes in real-world settings. Just predicting that a patient will be

“admitted” (i.e., binary classification: admission vs. discharge) will not necessarily allow full

proactive coordination of resource across the ED-IU network for streamlined patient admission

and flow. In this study, we put emphasis on the operationalization of prediction information

by modeling predictions that reflect the more realistic hierarchical structure in actual dispo-

sition decisions. In general, IUs can be divided into several units that usually do not share

the same resource features across each other. Hence, patient disposition decision prediction

models need to identify the likely inpatient care unit for admission for proper proactive co-

ordination. Generally, inpatient care can be categorized into three main types based on the

intensity of required care [45]: general practice care, telemetry/stepdown care, and intensive

care. In turn, the three different care levels define three main types of inpatient units, i.e.,

general practice unit (GPU), telemetry unit (TU, also known as stepdown unit), and intensive

care unit (ICU). Furthermore, our prediction modeling strategy incorporates the progressive

nature of ED care processes, where more clinical information is revealed and accumulated for

an ED patient as he/she goes through more ED processes. This study is a response to the need

for better coordination between the ED and IUs as well as a growing attention to predictive

medicine, especially relevant to emergency medicine.

3.2 Materials and Methods

3.2.1 Experimental Setting

The study is based on Electronic Health Record (EHR) data collected at the ED of an aca-

demic urban trauma center in SE-Michigan. The data items were collected for the period from

May 2014 to April 2016 and covers 184,895 patient visits. After accounting for abnormal
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departures, including AMA (against medical advice), dismissed patients, patients died in the

ED, LWCS (leaving without completing services), and transfers to other facilities, there were

175,500 observations. After removing patients who went to units that are not regarded as

regular IUs and are difficult to be categorized as one of the IUs, e.g., catheterization lab, peri-

operative unit, and post-anesthesia care unit, 172,809 patients remained in the dataset, which

corresponds to 93.5% of the total visits. As noted earlier, this hospital includes three main

types of IUs: GPU, TU, and ICU. Each main unit is further categorized based on specialties,

which include general internal medicine GPU, pulmonary GPU, surgical ICU, medical ICU, etc.

While a disposition decision can specify the most proper specialty unit for a patient, if all beds

in that unit are in use, the patient is generally transferred to the second most proper inpa-

tient unit and so on (i.e., overflow). In such cases, bed managers decide on the alternative

unit that can accommodate the patient within the same main unit (e.g., assigning the general

medicine GPU for a pulmonary GPU patient), then the disposition decision is updated accord-

ingly. Since the main goal of this research is to facilitate proactive coordination to reduce ED

patient boarding times, we consider the overflow scheme so that the classification results can

help inpatient units initiate their bed management processes earlier. It is worth noticing that

the features of inpatient beds and accessories are common over a main unit, and this in turn

usually constrains overflow to happen within the same main unit. Besides these three IUs,

we also consider the observation unit (OU). OUs are increasingly used as a short-stay clinical

decision unit for ED patients who require further observation to make the final disposition de-

cision. Usually the final disposition decisions for OU patients are made within 24 hours after

they enter the OU. Even though the OU is not a part of regular IUs in most hospitals, it plays

a significant role to control demand to IUs, and the number of OU patients is not negligible
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(around 6% in the target hospital). Therefore, we include the OU class as one of disposition

decisions in this study.

Considering how the five classes (the three IU classes, OU class and discharge class) are

defined, we can notice that the classification model should be able to discriminate the clini-

cal ‘intensity’ of ED patients, which makes the classification task challenging. Moreover, since

disposition decisions cannot always be completely objective, it is important to check how effec-

tively machine-based prediction models can assign ED patients into the five classes by exploit-

ing clinical, demographic, and operational data. In addition, different classification structures,

e.g., admission-discharge binary classification and five-class classification, can provide various

levels of utility for proactive coordination. For instance, while the five-class classification would

be helpful for managing resources that require unit-specific coordination, the binary classifica-

tion can still provide useful information for proactive resource coordination, including a more

efficient hospital resource allocation for expediting discharge processes and better ED service

for patients predicted to be admitted. Therefore, distinct levels of outcome granularity need to

be investigated to assess the value of ED disposition decision prediction.

3.2.2 Disposition Class Structure

We define three distinct levels of classification group structures for modeling disposition

decisions. At the first level (C1), the outcome of disposition decision classification is the binary

admission decision, i.e., admission vs. discharge. The OU class is included in the admis-

sion class. The C1 group structure has been adopted in most of the ED disposition decision

prediction modeling research to date [78, 14, 96, 21]. Since it is a relatively simple binary clas-

sification task, it could produce the most accurate results for those two classes. While the use

of prediction outcomes from this binary classification scheme would mostly be limited within
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the ED (i.e., the way to provide care to two different patient types), the prediction outcomes

can also be used when coordinating resources that are common and shared over all units (e.g.,

admission approvals/processing). At the second level (C2), the admission class at C1 is further

segmented into two sub-classes, i.e., IU vs. OU admission. While the IU class is regarded as

official admission, OU patients may not be considered as admitted patients depending on the

hospitals even though OU patients could have features that are clinically similar to IU patients.

Rather, the OU treatment is often regarded as an ‘extended ED care’, and patient transfers to

OUs can be different from regular IUs in many hospitals. Finally, at the most granular level

(C3), the inpatient admission class at C2 is further categorized into three main IU classes, i.e.,

ICU, TU, and GPU. We believe that the C3 group is where the most significant operational

benefit can be derived for coordinating patient flow across the ED-IU network. Most hospi-

tals in the U.S. physically separate ICU, TU, and GPU, pooling resources (e.g., environmental

services) within each unit exclusively. We can thus symbolically represent each class group as

follows: C1={admission, discharge}, C2={IU, OU, discharge}, and C3={ICU, TU, GPU, OU,

discharge}. Figure 14 depicts the overall structure of the studied classification problem struc-

ture. It is expected that as we increase the granularity of prediction (i.e., from C1 through C3),

the prediction problem becomes more challenging.

We acknowledge that each unit at C3 can be further classified. For instance, in the studied

hospital, there are twelve distinct units based on specialty of care in GPU. They include in-

ternal medicine, nephrology, obstetrics/gynecology, orthopedic surgery, general surgery, neu-

rology, transplant, hospice, hospitalist, pulmonary, and hematology/oncology/bone marrow

transplant. However, a patient going to any one of these units can often be admitted to any

other unit in the GPU based on common overflow policies and resource availability. Moreover,
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Figure 14: Hierarchical Structure of ED Disposition Decision Along with Number and Percent-

age of Patients

about half the time, physicians in the hospital make disposition decisions at the main IU level

without further specifying any specialty. Therefore, in this study, we focus on classifying those

three five classes (i.e., GPU, TU, ICU, OU, and discharge) at C3. This focus was also chosen

due to its higher utility of predictions.

3.2.3 ED Patient Disposition Classification Strategy

It is worth introducing the proposed classification strategy briefly with few associated con-

cepts from data science. The ED disposition prediction inherently presents a ‘hierarchical’

classification structure (as shown in Figure 14). The disposition decision classification is a

mandatory-leaf classification problem in that the most proper class is always found at the low-

est level (overall structure resembles a tree, and the classes of interest are the leaf nodes).



www.manaraa.com

63

For instance, an IU patient at C2 should be one of the GPU, TU, or ICU patients at C3. Also,

it is tree-structured in that no two nodes share a common child node. For instance, any two

patients that are classified as belonging to the IU class and the OU class respectively at C2 can

never be classified as belonging to the same class at C3. To tackle hierarchical classification

problems, there are multiple possible approaches, but the various modeling approaches can

be categorized into two main categories, which are the ‘big-bang’ approach and ‘top-down’

approach [93]. While the top-down approach starts its classification task from the parent node

and uses the obtained prediction outcomes for classification at its child nodes, the big-bang

approach classifies the most proper class for the full problem with a single model. We take

notice that the ED disposition classification problem is an ‘imbalanced’ classification problem

in that most patients are sent home or discharged (75.3% in the target hospital). Most clas-

sification methods tend to suffer in handling imbalanced classification problems. Given the

hierarchical structure of ED disposition and the class membership imbalance at C1 level, the

top-down approach would incur serious challenges at the down-stream levels (C2 and C3).

This is due to the tendency of classification models to favor classes with dominant membership

(discharge class in our case) and possibly produce many false negative predictions at C1 that

can propagate down the hierarchy. Especially when the problem is of a mandatory-leaf node

structure, this issue cannot be easily handled (i.e., false negative cases will spread through-

out the entire levels). Therefore, we choose to adopt the big-bang approach for predicting

disposition decisions. Moreover, since each prediction class level could bring about their own

operational benefits, we also build classification models at each level. In summary, we model

and analyze the mandatory-leaf node, tree-structured ED disposition classification problem

with the big-bang classifier per level approach.
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3.2.4 Temporal Aspects of ED Disposition Prediction

We consider not only the hierarchical structure of inpatient units but also the decreasing

diagnostic uncertainty patterns characterized at ED care stages. To study how disposition de-

cision uncertainty reduces as ED care processes proceed, we identify four different ED care

stages for each patient: ‘ED arrival’ (T1), ‘triage complete’ (T2), ‘provider encounter’ (T3), and

‘first lab/imaging results returned’ (T4). At T1, ED patients come with some basic information

such as arrival time/mode, health history (including prior ED visit history), and demograph-

ics. Then patients go through triage processes where patients’ vital signs and chief complaints

are recorded (T2). T2 is when most admission decision prediction models have been built

in the literature [96, 24, 37, 59, 49]. At T3, ED care providers examine patients and issue

orders of lab/imaging tests. We incorporate the first set of lab/imaging test items ordered by

care providers at T3 (upon examining the results from these tests, care providers can order

additional tests downstream within the ED care cycle, which are outside the scope of data

employed for the T3 setting). The chief objective of this research study being ‘proactive’ coor-

dination within the ED-IU network, there is no point in making accurate disposition predictions

using information that arrives too late in the ED care cycle when the final disposition decisions

is already available. T4 indicates the time when the results for the first set of lab/imaging

orders are fully reported. Table 11 describes the time spans between these different ED care

stages in the study hospital. Of note median door to disposition is four and a half hours at the

study hospital.
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Table 11: Summary Statistics of Supply and Demand around the ED-IU Network

ED care stages 1Q / median / 3Q (in minutes)

T1 to T2 11.3 / 17.6 / 29.0

T2 to T3 19.5 / 47.5 / 92.8

T3 to T4 35.0 / 55.0 / 90.0

3.2.5 Data

Tables 12 and 13 summarize data items, including univariate statistics for demographics,

acuity level, chief complaints (five example complaints), vital signs, and bivariate statistics for

lab test results and imaging test items (five example items respectively). We ran t-tests for

the vital signs and lab test results. As stated earlier, we focus on the first set of lab/imaging

tests ordered at the first encounter with care providers. Due to the size of the feature set

and different class levels (i.e., C1, C2, and C3), we do not present analysis results for all

the variables. Rather, we selectively present the multivariate analysis statistics for some key

features that are shown to be statistically associated with outcome classes at C3 in Section 3.3.

The entire dataset is split into two parts, first 60% of the patient visits for training and the rest

for testing. We only report prediction results obtained from the testing dataset in Section 3.3.

3.2.6 Feature Engineering

As expected, we observed that most of the data items collected are categorical variables.

Demographic and operational information, including gender, arrival time (hour), arrival method,

and insurance plan, are inherently categorical. While there is no definite rule to categorize age

into groups, we use the age categorization rule applied by the CMS for personal health care

spending study [32]. For variables that have too many categories, such as arrival method and
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Table 12: Univariate Analysis of the Variables Used in the Model

Median/mean/

Variable count/proportion (Q1, Q3) Comments

Age (median) 45.0 (27.0, 60.0)

Number of arrivals per hour (median count)

12AM∼4AM 5.0 (3.0, 7.0) 8.6%

4AM∼8AM 4.0 (3.0, 5.0) 6.8%

8AM∼12PM 13.0 (10.0, 16.0) 21.1%

12PM∼4PM 15.0 (12.0, 17.3) 24.5%

4PM∼8PM 14.0 (11.0, 16.0) 22.3%

8PM∼12AM 10.0 (8.0, 12.0) 16.7%

Gender (proportion)

Female 54.9%

Male 45.1%

Insurance plan 285 different plans

Patient arrival modes 62 different modes

Any prior ED visit history to ED
23.1%

0.4 prior visits/patient
(within last 30 days) on average

Acuity levels (proportion)

ESI level-1 2.0%

ESI level-2 36.3%

ESI level-3 54.4%

ESI level-4 6.3%

ESI level-5 0.5%

Chief complaints (proportion, 5 example complaints)

Abdominal pain 10.0%

Shortness of breath 5.5%

Chest pain 5.5%

Back pain 3.6%

Headache 3.3%

ESI, emergency severity index.
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Table 13: Bivariate Analysis of the Variables Used in the Model

Discharge Admission

Variable
Mean/ (Q1, Q3) Mean/ (Q1, Q3) Comments

proportion proportion

Vital signs (mean) p–Value

Temperature (°F) 98.3 98.4 > 0.5

Pulse (rpm) 86.4 89.5 < 0.001

Systolic BP
133.4 137.1 < 0.001

(mm Hg)

Diastolic BP
78.5 79.1 < 0.001

(mm Hg)

Respirations (rpm) 18.6 19.7 < 0.001

Pulse oximetry (%) 98.2 97.2 < 0.001

Results of lab tests ordered at first encounter with doctor (mean, ordered proportion) p–Value

Troponin I (ng/mL)
0.04 (0.04, 0.04) 0.8 (0.04, 0.14) <0.001
8.6% 43.6%

BNP (pg/mL)
177.9 (13.0, 110.0) 538.5 (38.0, 633.0) <0.001
3.3% 8.9%

PT/INR/PTT (sec)
15.2 (13.2, 14.6) 18.0 (14.1, 18.7) <0.001

14.1% 18.7%

Lactate blood (mmol/L)
1.7 (1.1, 2.1) 2.2 (1.0, 2.4) <0.001

8.6% 43.6%

CBC /w differential
8.0 (5.8, 9.6) 10.0 (6.2, 11.9) <0.001

32.3% 73.8%

Imaging text orders after first encounter with doctor (ordered proportion)

Chest x-ray 3.4% 25.8%

CT head 3.2% 11.0%

CT abdomen pelvis 0.9% 1.9%

Acute abdominal series 1.8% 3.1%

CT pulmonary embolism 0.2% 0.7%

BNP, brain natriuretic peptide; PT/INR/PTT, prothrombin time/international normalized ratio/partial

thromboplastin time; CBC, complete blood count.
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insurance plan, the categories are condensed based on both frequency and meaning of cat-

egories. All of the demographic and operational information is immediately available at the

arrival of patients. Through natural language processing (NLP), chief complaints and asso-

ciated text were encoded as vectors. For vital signs, we categorized the numerical variables

based on National Institutes of Health (NIH) National Library of Medicine [74].There are 357

types of lab/imaging tests that were ordered at the first encounter with care providers in total

within this patient set. Lab test results are initially entered as numerical values, but the HIT

system also provides result flags that automatically categorize numerical lab values based on

preset category boundaries. For instance, for magnesium testing, the system categorizes its

values into five groups: low panic ≤ 0.9 < low ≤ 1.8 < normal ≤ 2.2 < high ≤ 4.0 < high

panic. Since the categories are clinically valid, when result flags are available, we choose to use

the categories rather than numerical values for easing the burden on the classification model.

For lab tests that do not have the result flags, supervised feature discretization techniques are

applied to categorize the numerical values (in particular a Chi-square based algorithm named

ChiM [58] is mainly used). Unlike the lab tests, the results for radiology tests were not avail-

able electronically in a form that can be readily coded. Therefore, for radiology tests, we only

encompass the types of tests ordered into the prediction models.

3.2.7 Modeling

We applied various classification modeling techniques that include multinomial logistic

regression, artificial neural networks, support vector machines, and random forests. Among

these approaches, a well-established approach, multinomial logistic regression produced the

best prediction performance overall. Therefore, in this study, we focus on reporting prediction

results generated by multinomial logistic regression models.
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Table 14: Comparing Prediction Model Performance at Different Care Points for C1

C1 class T1 T2 T3 T4

Accuracy 77.9% 84.6% 85.5% 87.1%

Admission Sensitivity 30.2% 56.3% 58.7% 63.9%

(24.7%) Precision 60.0% 74.8% 76.6% 79.2%

Discharge Sensitivity 93.4% 93.8% 94.2% 94.6%

(75.3%) Precision 80.4% 86.8% 87.5% 89.1%

3.3 Results

3.3.1 C1 Classification Group

As shown in Table 14, at door (T1), without any clinical information, we can predict admis-

sion decision of ED patients with 77.9% accuracy. While the sensitivity of the admission class

is around 30% at T1, the false positive rate (1-sensitivity of the discharge class) of the model

is less than 7%. While incorporating more information allows the model to enhance its per-

formance (from T1 through T4), the biggest improvement is made at triage (T2) where 56.3%

of admitted patients are correctly predicted with less than 7% of false positives. With the first

set of lab test orders (at T3), the improvement of prediction performance is not noticeable.

However, when the test results return, there is additional information that can lead to another

rise in prediction quality. Unlike the admission prediction work done at the ED in an Israeli

hospital [14], the results of lab tests (from T2 to T4) seem more useful than the decisions to

order specific lab tests (from T2 to T3) to enhance the prediction in our experiment hospital.

This may be because of the inclusion of results of extensive lab tests.
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Table 15: Comparing Prediction Model Performance at Different Care Points for C2

C1 class T1 T2 T3 T4

Accuracy 76.6% 82.3% 83.2% 84.9%

IU Sensitivity 23.5% 56.4% 58.5% 64.6%

(18.7%) Precision 49.1% 66.8% 69.9% 73.1%

OU Sensitivity 0.0% 6.6% 9.4% 15.3%

(6.0%) Precision - 44.3% 44.6% 55.3%

Discharge Sensitivity 96.0% 95.3% 95.7% 95.8%

(75.3%) Precision 79.1% 85.6% 86.2% 87.8%

3.3.2 C2 Classification Group

In the C2 class group, just like the C1 group case, the steepest increase in prediction ability

is gained at triage (as shown in Table 15). It is noticeable that the OU class, being an interme-

diate class between the IU class and the discharge class, does not seem to have clear clinical

distinction, compared to the IU and discharge classes. The lab test result items (T4) prove their

predictive power at the C2 level as well. In particular, the precision of classification for the OU

class exceeds 50% with doubled the sensitivity from T2, by incorporating lab test results.

3.3.3 C3 Classification Group

It is plausible that C3 class group classification would provide the most informative results

for proactive resource coordination. Therefore, we present the prediction results from various

angles so that detailed analysis can become possible. First, Figure 15 reports the sensitivity

(Figure 15(a)) and prediction (Figure 15(b)) values of each class resulted from each predic-
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tion model. For the C3 group, we choose to report prediction results with graphics to clearly

represent how prediction quality evolves as more information is gathered for each class. The

C3 group classification is an imbalanced multiclass classification problem with fairly small por-

tions of the minor class patients (especially ICU and TU with 3∼4% respectively), compared to

the major class (i.e., discharge) that consists of 75.3% of the entire patients. Figure 15 shows

that each class reveals different behaviours. At T1, the prediction model fails to detect those

minor classes. In fact, most of the patient visits are predicted as the discharge class at T1,

which proves the insufficient information to detect the minor classes. At T2 (triage), predic-

tion quality varies depending on classes. The highest level of both sensitivity and prediction is

obtained for the ICU class. It indicates that ICU patients possess most distinct features at the

triage stage, and even though the number of ICU patients is small (only 3.8%), around 40%

of ICU patients can be detected with about 50% of prediction precision. Triage information

also carries a considerable amount of information for GPU class prediction. However, even

though the number of GPU patients is comparatively large among the minor classes, which

usually makes prediction easier, the prediction performance levels are inferior to those of the

ICU class, emphasizing the clear clinical distinction of ICU patients at triage. We also observe

that the prediction of the TU and OU classes is markedly less accurate, compared to the ICU

and GPU classes at T2. It would mean that while ICU and GPU patients possess clinically dis-

tinguishable information at triage, TU and OU patients do not have clear clinical trajectory at

triage, remaining as in-between states, i.e., the TU between the ICU and GPU, and the OU be-

tween the GPU and discharge. However, at T3, we can recognize that the physicians’ decisions

to order certain lab/imaging tests prove useful for predicting the TU class. It seems that the

clinical care intensity and needs of TU patients are difficult to be estimated at triage. However,
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Figure 15: Comparing Prediction Model Performance at Different Care Points for C3

doctors would start to judge the clinical severity and required care services (especially constant

cardiac monitoring) for patients based on triage information and try to distinguish TU patients

by ordering additional lab/imaging tests.

The results in Figure 15 also show that, generally, information gain from lab test order re-

sults is larger than that from lab test order items. Especially, the precision levels of prediction

are greater than 45% in all the five classes at T4, while sensitivity levels vary. The greatest sen-

sitivity level is gained for ICU and GPU patients with more than 42% (apart from discharged

patients with 96.4%), and 36.4% of TU patients can also be detected. With the comparatively

high-performance levels for the ICU class at T2, the additional gain of prediction ability for

the ICU class at T4 is not drastic, compared to other minor units. The distinct progression

behaviours clearly indicate that any proactive task initiation strategy that utilizes ED disposi-

tion decision prediction should consider the different levels of prediction quality obtained at

different care stages for each different unit. Setting the discharge class as the negative class,
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the false positive rate at the C3 class group is only 3.8% at T4.

3.3.4 Prediction Threshold Analysis at C3

It is important to understand how the prediction results can be further exploited to enable

the operationalization of prediction information. Especially, being a probabilistic classifier,

multinomial logistic regression outputs not only a predicted class for a patient but also an esti-

mated probability value for each of the classes for a patient. The estimated probability values

tell us about the confidence of membership at each disposition class. By imposing a probability

threshold in making prediction, we can set up the level of confidence with which a disposition

prediction is made for a patient. In other words, by applying a probability threshold, the model

does not make any prediction unless any one of the classes has a higher probability value than

the threshold. Therefore, as we set a higher threshold, prediction would become more reli-

able with increasing precision values. Figure 16 shows how the sensitivity and precision of

prediction behaves for each class among the patients who have higher probability values than

the different levels of the threshold (the solid lines with the left y-axis). It also displays how

the fraction of patients included in the analysis decreases as the threshold value increases (the

dashed line with the right y-axis). For instance, if we impose 60% threshold to the ICU class,

the sensitivity of ICU class prediction among the fraction of the patients increases from 45.8%

to 62.1%, and the precision of the prediction would increase from 55.4% to 68.8% while

82.6% of the patients are included in the analysis. It is noticeable that although the higher

threshold values tend to bring higher sensitivity values for the ICU and TU class patients, it

does not affect the GPU and OU class patients in the same way. When the model focuses on the

patients who have high probability values for the selected classes, there are more predictions

made for ICU and TU classes than the GPU and OU classes, compared to their actual distri-
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Figure 16: Performance Analysis According to Different Threshold Probability for Making Pre-

diction

bution. This implies that the predictions of the ICU and TU classes have higher confidence

(with higher probability values) than those of the GPU and OU classes because of their clinical

distinctiveness.

3.3.5 Feature Analysis at T4

Besides the various prediction performance behaviours shown in the C3 classes, the im-

portance of each feature also varies depending on the classification group. Table 16 reports

the statistically most significant features at T4, calculated by the chi-square test at different

classification groups. The study hospital has six compartmental primary care areas. Triage

nurses determine the most appropriate primary care area for an ED patient based on the clin-

ical information and acuity level of the patient. This feature presents high importance for

disposition decision prediction in all of the three classification groups. As the classification

group becomes more granular (i.e., from C1 through C3), more lab test result features become
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important to predict the classes. One observation from the feature analysis is that the signifi-

cance of a feature is monotonically changed from C1 through C3 for most of the features. In

other words, as we increase the granularity of classes, the importance of a feature keeps ei-

ther increasing or decreasing. It happens to 34 among the 36 features selected within the top

25 important features at T4 in Table 16. In particular, electrocardiogram (ECG), chest x-ray,

blood culture, computed tomography (CT) head without contrast, and CT angiography head

neck with contrast are lab/imaging test results/items that have ever increasing importance as

prediction classes are subdivided from C1 to C2 and C3. In addition, vital signs measured at

triage become less important as the modelling proceeds from C1 through C3. Interestingly, as

the prediction classification structure becomes more detailed (from C1 through C3), all non-

lab/imaging test results/items become lower in the importance order except chief complaints

(notice that the order of importance of the chief complaint items in Table 16 keeps increasing

as the disposition classes become more granular).

Table 19 compares the distribution of some informative feature values over five classes in

the C3 class group. The distributions are derived from the entire dataset (combined training

and testing sets). The probability value is highlighted in bold when the probability at a minor

class exceeds 30%, and the probability of the discharge class surpasses 95%. It is noticeable

that patients with “high panic” results in the Troponin I test are likely to be admitted to the TU

with 49% probability. Also, 43% of ESI level-1 patients have been admitted to the ICU.

3.4 Discussion

We attempted to frame ED disposition prediction as an analytics problem, seeking proactive

task initiation for ED admissions. To the best of our knowledge, this work is the first attempt to

define the ED disposition decision prediction as a hierarchical multi-class classification prob-
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Table 16: Important Features to Predict Disposition Decision Classes at T4

Order of C1 classification C2 classification C3 classification
importance structure structure structure

1 Primary care area Primary care area IMG: Chest x-ray

2 LAB: Troponin I IMG: Chest x-ray ECG: 12-lead

3 Acuity level ECG: 12-lead Primary care area

4 LAB: PT/INR/PTT LAB: Troponin I LAB: Troponin I

5 LAB: CBC w/ differential Acuity level LAB: BNP

6 Age LAB: PT/INR/PTT LAB: Blood culture

7 LAB: Basic metabolic LAB: CBC w/ differential Acuity level

8 LAB: Lactate whole blood LAB: Basic metabolic LAB: PT/INR/PTT

9 LAB: BNP LAB: Blood culture LAB: Lactate whole blood

10 LAB: ECG 12-lead Age IMG: CT head

11 IMG: Chest x-ray LAB: Lactate whole blood CC: Chest pain

12 Insurance plan LAB: BNP LAB: CBC w/ differential

13 LAB: Blood gas venous Insurance plan LAB: Basic metabolic

14 LAB: Magnesium LAB: Blood gas venous CC: Shortness of breath

15 Arrival method LAB: Magnesium Age

16 LAB: Blood culture CC: Shortness of breath LAB: Blood gas venous

17 LAB: Liver profile CC: Chest pain Insurance plan

18 LAB: Phosphorus Arrival method LAB: Magnesium

19 LAB: POC glucose IMG: CT head CC: Stroke rule out

20 VT: Pulse oximetry LAB: Liver profile CC: Altered mental status

21 CC: Shortness of breath LAB: Phosphorus LAB: Liver profile

22 VT: Temperature VT: Temperature IMG: CT angiography head neck

23 LAB: Blood gas arterial VT: Pulse oximetry VT: Pulse oximetry

24 IMG: CT head CC: Altered mental status VT: Temperature

25 VT: Respirations LAB: POC glucose LAB: Urine culture

CC, chief complaint at triage; IMG, radiology (imaging) tests;LAB, lab tests; VT, vital signs at triage;

POC, point-of-care. Only lab tests have test results.
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Table 17: Distribution of Each Feature Value over C3 Classes (1)

Feature Number of cases ICU TU GPU OU Discharge

values (172,809 in total) (0.04) (0.03) (0.12) (0.06) (0.75)

(a) Chest x-ray

Yes 20,293 0.21 0.13 0.23 0.14 0.28

(b) Troponin I

High panic 2,009 0.34 0.49 0.13 0.01 0.03

High 5,862 0.20 0.25 0.30 0.11 0.14

Normal 31,471 0.10 0.07 0.21 0.18 0.44

(c) Basic metabolic

High panic 131 0.57 0.06 0.34 0.01 0.02

High 1,034 0.20 0.08 0.27 0.07 0.37

Normal 82,771 0.06 0.06 0.17 0.10 0.61

Low 12,980 0.11 0.07 0.31 0.09 0.43

Low panic 400 0.41 0.09 0.43 0.03 0.04

(d) BNP

High 9,190 0.15 0.24 0.28 0.12 0.19

Normal 6,089 0.08 0.08 0.19 0.24 0.41

(e) Insurance plan (four distinct examples)

Plan 1 19,675 0.08 0.07 0.22 0.10 0.54

Plan 2 3,577 0.08 0.09 0.26 0.13 0.44

Plan 3 5,314 < 0.01 < 0.01 0.03 0.02 0.94

Plan 4 4,067 0.03 < 0.01 0.03 0.04 0.90
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Table 18: Distribution of Each Feature Value over C3 Classes (2)

Feature Number of cases ICU TU GPU OU Discharge

values (172,809 in total) (0.04) (0.03) (0.12) (0.06) (0.75)

(a) Primary care area

Area 1 28,898 0.21 0.15 0.21 0.14 0.29

Area 2 47,008 < 0.01 0.01 0.14 0.07 0.77

Area 3 42,453 <0.01 0.01 0.13 0.06 0.79

Area 4 53,086 <0.01 < 0.01 0.01 0.01 0.98

(b) Acuity level

ESI level-1 4,443 0.43 0.07 0.17 0.06 0.28

ESI level-2 82,674 0.07 0.07 0.20 0.11 0.55

ESI level-3 124,011 0.01 0.01 0.07 0.04 0.88

ESI level-4 14,456 < 0.01 < 0.01 < 0.01 < 0.01 0.99

ESI level-5 1,036 0 < 0.01 <0.01 0 0.99

(c) Age

∼ 2 1,999 0.03 0 < 0.01 0 0.97

3 ∼ 5 2,892 0 0 0 0 1

6 ∼ 18 6,679 <0.01 < 0.01 0.01 < 0.01 0.98

19 ∼ 44 64,780 0.01 < 0.01 0.07 0.03 0.88

45 ∼ 64 38,504 0.05 0.04 0.13 0.08 0.70

65 ∼ 84 12,580 0.09 0.08 0.23 0.11 0.50

86 ∼ 2,746 0.10 < 0.11 0.27 0.13 0.39

(d) Arrival method (four distinct examples)

EMS 1 16,309 0.08 0.04 0.15 0.08 0.65

EMS 2 10,433 0.09 0.05 0.21 0.10 0.56

Public transportation 3,127 < 0.01 < 0.01 0.03 0.03 0.94

Walk in 5,671 0.01 < 0.02 0.07 0.86 0.98

EMS, emergency medical services
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Table 19: Distribution of Each Feature Value over C3 Classes (3)

Feature Number of cases ICU TU GPU OU Discharge

values (172,809 in total) (0.04) (0.03) (0.12) (0.06) (0.75)

(a) Temperature at triage (°F)

∼ 95.0 339 0.17 0.07 0.20 0.05 0.50

95.1 ∼ 97.7 26,457 0.04 0.04 0.13 0.07 0.73

97.8 ∼ 99.1 125,866 0.02 0.03 0.10 0.06 0.79

99.2 ∼ 100.0 6,909 0.03 0.03 0.16 0.05 0.72

100.1 ∼ 3,538 0.06 0.03 0.24 0.03 0.64

(b) Pulse oximetry at triage (%)

∼ 94.0 7,476 0.14 0.09 0.29 0.08 0.41

94.1 ∼ 160,677 0.03 0.03 0.11 0.06 0.77

(c) Respirations at triage (rpm)

∼ 11 215 0.33 0.04 0.15 0.04 0.44

12 ∼ 18 115,557 0.03 0.02 0.10 0.06 0.79

19 ∼ 25 44,242 0.05 0.04 0.15 0.07 0.70

26 ∼ 7,558 0.14 0.07 0.19 0.04 0.56

(d) Pulse at triage (rpm)

∼ 59 6,263 0.05 0.06 0.10 0.10 0.69

60 ∼ 100 128,533 0.03 0.03 0.10 0.06 0.78

100 ∼ 35,429 0.07 0.05 0.17 0.05 0.67
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lem, categorizing the admission patients into more detailed classes so that the outcomes of

the prediction can become practically useful for proactive coordination across the ED inpatient

unit network. For the operationalization of the prediction information, more detailed inves-

tigation of prediction performance throughout ED care processes should be conducted. This

study shows that in the study hospital, triage presents a significant amount of information to

predict the disposition decision, especially for the ED patients headed to ICU. As patient infor-

mation is accumulated through lab test orders and their results, the prediction power gradually

increases. However, this can vary depending on the classes. It implies that a proper proactive

task initiation strategy could vary in different classes depending on their own uncertainty re-

duction trends. This study also provides insights into physicians’ disposition decisions and lab

test result values through large scale data analysis.

3.5 Limitations

One of the limitations of this work is that we cannot guarantee whether the models have

exploited the collected information to the greatest extent. For instance, we discretized the

numerical variables such as lab test results into finite levels to transform them into categor-

ical variables. However, more advanced data-driven methodologies, such as deep learning

approaches, would be able to better extract features by thoroughly searching any interrelation-

ship between the numerical variables. These approaches would compromise the repeatability

and consistency of prediction, but the methods are rapidly becoming mature with technical

advances. Another limitation of our work is that there is additional information in the EHR

that could have been included in the models to precisely measure predictive power at each care

step. One of these is notes entered by care providers. It is expected that a lot of clinically sig-

nificant information is electronically recorded in physician notes in various formats including
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text. Since the note data items contain refined information that comes from the interpretation

of clinical examination for patients, the inclusion of physician notes can significantly improve

the prediction ability for disposition decisions.

3.6 Conclusion

This work builds on a growing academic and industrial attention to the usefulness and

feasibility of proactive task initiation in health care that can be empowered by predictive ana-

lytics. Multi-class prediction that considers the actual patient flow and resource management

schemes around the ED can help with effective early task initiation for admitted ED patients.

The prediction system in this study reveals how prediction performances for each class evolves

as ED patients go through ED care steps. Future studies will incorporate more advanced mod-

eling techniques to exploit useful data items that are readily available in HIT systems in the

ED.
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CHAPTER 4: CONCLUSIONS AND FUTURE RESEARCH

This dissertation contributes to and advances the literature in exploring proactive coordi-

nation in healthcare service systems. Coupled with advanced analytics and EHR data from

healthcare facilities, a promising coordination paradigm of early task initiation is proposed.

In the proposed proactive coordination scheme, demand for certain care/operations services

in a healthcare facility is predicted early and communicated to different department/support

systems for them to take necessary steps “proactively” to enhance care quality and operational

efficiency. Operations research enhanced by predictive analytics that utilizes modern machine

learning methods can facilitate proactive coordination for dramatically improved patient flow

and health outcomes.

Unlike the existing coordination settings that only involve patients, clinical/operational ser-

vice providers, and resources, the proactive coordination should take different aspects of pre-

dicted future-state information into consideration. To enable proactive coordination through

predictive analytics, it is critical to understand how the reliability of future-state information

evolves as more information is accumulated for patients over time and design feasible and

effective coordination mechanisms accordingly to take optimal actions at the most opportune

time. To this end, this dissertation discusses the design of effective service coordination mech-

anisms that govern prediction updates and operational actions to reduce service delays in

healthcare facilities, especially at the interface between the ED and IUs.

We now present a summary of our research along with contributions and discuss future

directions of research that may stem from our work.
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4.1 Summary

4.1.1 Proactive Coordination between ED and IUs to Reduce Patient Boarding

We explored the proactive management of inpatient unit bed preparation processes for ED

patients in an academic urban level 1 trauma center. Unlike the general belief that the pro-

longed boarding delay is caused by the lack of inpatient beds, there are open yet unprepared

beds most of the time when EDs suffer from severe boarding. We incorporated two pieces of

future-state information of patients, i.e., remaining ED LoS and target disposition decisions of

patients that can trigger proactive inpatient bed requests, into stochastic modeling processes

and designed a fork-join queueing network to model the ED-IU network. The proposed meth-

ods enabled us to analytically solve the designed queueing network that shows state-dependent

transition behaviors with distinct types of patients, beds, and prediction errors. The key as-

sumption is that once a patient enters an ED and starts undergoing triage, tests (laboratory

work and imaging), and treatment, there is growing amount of information for the patient

within the EHR to allow reliable prediction of ED disposition decision well ahead of the final

disposition decision. Instead of assuming that earlier proactive bed request signals will always

lead to a greater reduction in waiting time, we investigated the operational impacts of the tim-

ing of proactive bed requests and the errors of the signals. If proactive signals are sent earlier,

the operational benefits will increase, but the reliability of prediction information might be

compromised due to insufficient patient information. While this trade-off relationship cannot

be grasped by classification performance measures, our approach can evaluate the expected

operational impact of prediction models by characterizing the bed allocation delay reduction

behaviors in different operational settings.

In the ideal case where an IU is dedicated to ED patients and disposition decision predic-
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tions are perfect, the proposed bed allocation strategy can lead to about 50% reduction in bed

allocation delay for ED patients in a realistic setting mimicking the actual operational param-

eters of the study hospital. In the more realistic case where an IU is shared by ED and non-ED

patients and disposition decision predictions are imperfect, as disposition prediction quality

improves, ED patients experience more reduction in bed allocation delay. On the contrary,

as the prediction quality degrades, reduction in bed allocation delay for ED patients becomes

smaller. However, beds that are prepared due to false positive predictions can be occupied by

non-ED patients, and bed allocation delay for non-ED patients can be reduced. Moreover, we

showed that as bed preparation servers operate with higher utilization, the impact of prediction

quality on boarding delay reduction becomes greater. Therefore, improvement in prediction

quality can become more important when the proactive bed allocation scheme is applied to

bed preparation servers that are busy.

Finally, we demonstrate that one should account for the progressive nature of the ED care

process in optimizing the impact of proactive coordination. If relevant information gain is

drastic throughout the ED processes, postponing early bed requests for such patients can actu-

ally help improve operational efficiency. However, for patients likely to be admitted to certain

inpatient units, the disposition decision prediction quality is rather good even at the earliest

stages of the ED care process (e.g., even as early as triage). For such patients, it would be best

to send early bed requests without wasting time to wait for more information.

4.1.2 Predicting ED Disposition Decision for Early Resource Allocation

To operationalize prediction outcomes, the form of future information should suit opera-

tional needs. We identified that while ED disposition decision prediction has received a signif-

icant attention by data scientists and practitioners, a simple binary classification compromises
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the actual utility of prediction results. We framed the ED disposition decision prediction prob-

lem as a multiclass hierarchical classification that could have different utility at each hierarchi-

cal level. By modeling machine-based prediction models, trade-off relationship between the

reliability and timeliness of disposition decision prediction was unraveled. We demonstrated

that for different IU groups, the prediction quality evolution behaves in its own unique way

according to the gain of relevant information. In particular, there is significant amount of in-

formation collected during triage, where patient initial clinical information is gathered. Then,

when lab test results return, there is further progress in the prediction performance. We char-

acterized the patterns in which clinical and demographic information of patients turns into

operational implications for patients, by analyzing large-scale patient information, focusing on

temporal history of data resulting from ED caregiving stages and laboratory/imaging tests.

Among the different class groups, the most granular class group that includes ICU, TU, GPU,

OU, and discharge classes, provides the most useful information. At the same time, however,

this class group forms the most difficult classification problem due to the imbalanced distribu-

tion of true disposition decisions over the five classes. Despite this challenge, the detailed EHR

data items contain useful information that can enhance prediction quality. For instance, the

information gathered until the return of the first set of lab tests ordered for a patient enhances

the prediction performance that the precision levels in all the five classes reach 45%. In par-

ticular, the precision levels for both the ICU and GPU classes exceed 50%, which detect more

than 42% of patients in the two classes. Even though the utility of the binary classification

problem (i.e., admission vs. discharge) is limited, the prediction performance of the binary

classification is appealing with the sensitivity and precision levels of the admission class that

are greater than 60% and 75%, respectively. While the five-class classification helps facilitate
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resource coordination at each IU, the outcome of the binary classification can contribute to

improved care processes and expedited discharges in the ED.

Moreover, by imposing a probability threshold in making disposition decision predictions,

a hospital can choose to send early bed requests only when a certain level of confidence (i.e.,

probability of admission to a certain IU) is obtained. This strategy will reduce the total number

of patients who will subject to proactive coordination but will enhance the effectiveness of

coordination for the selected subset of patients. While the strategy will improve the precision

levels for all of the minor classes, the sensitivity levels increased only for the ICU and TU

classes in our study hospital. This can be attributed to the fact that the information gathered

at T4 has distinct features for these two classes than other minor classes.

Finally, our study also presents insights into the relationship between individual features

and physicians’ disposition decisions through large scale data analysis. The total number of

features we incorporated into the prediction models is over a thousand. While prediction

models exploit the features to the greatest extent possible for making predictions, each single

feature, especially from vital signs and lab test results, provides interesting insights into how

clinical values are related to physicians’ disposition decisions.

4.2 Future Research

4.2.1 Sequential Decision Making with Prediction Information

Despite a number of research works in clinical and operational prediction in healthcare set-

tings, study on decision making based upon predictive analytics is limited. Sequential decision

making is imperative in healthcare operations since services performed by different providers

and departments are interdependent, and actions taken by one service provider or department

affects the outcome of actions taken by another. Currently, most sequential decision making
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under uncertainty, such as a partially observable Markov decision process, only assumes prob-

ability distributions without consideration for the forms of prediction outcomes. If predictive

analytics is to be a useful tool in real-world healthcare systems and not just a collection of

advanced techniques, science must progress in developing decision making algorithms that

incorporate predictions. Even though sequential decision making based on prediction infor-

mation should be problem-specific because the forms and types of future-state information to

be created depend on specific clinical and operational settings, the types of future-state in-

formation can be categorized into two main types: outcome (e.g., relapse of an illness and

intensive care unit admission) and timing (e.g., chronic disease onset timing and admission

timing). Operationalization of future-state information is not very effective unless forecasting

risks, including prediction errors, can be properly considered and handled through decision

making processes. Unfortunately, effectiveness of prediction information in actual clinical and

operational settings is very rarely studied. Improvement of understanding of relationship be-

tween information quality and decision making is highly demanded by a growing number of

real world healthcare systems.

4.2.2 Distributed Multi-Agent Coordination Modeling

Coordination mechanisms are an integral topic in distributed multi-agent systems that co-

operate based on information exchange. How to define the interactions between patients, clin-

ical/operational service providers, and information is important to effectively and efficiently

characterize systems for presenting actionable insights in distributed service environments.

Most existing approaches assume that multiple agents (i.e., service providers) are aware of

the state of other agents through communication, which implies that the implementation of

coordination of each agent’s action requires the agent to communicate its current state to other
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agents at each step. However, considering the complexity and urgency of services in hospitals,

despite the existence of HIT systems, it is difficult to fully update the information at the exact

time that actions are performed, thus making existing modeling approaches invalid. Therefore,

modeling the interactions between the agents by identifying most informative communication

between them through empirical data analysis is necessary. This modeling method will in turn

provide essential coordination mechanisms while dramatically reducing the degree of commu-

nication in decision modeling with only a slight compromise on optimality.
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patient flow and mortality for emergency admissions to hospital. Australian Health Review

39(5):533–538.

[96] Sun Y, Heng BH, Tay SY, Seow E (2011) Predicting hospital admissions at emer-

gency department triage using routine administrative data. Academic Emergency Medicine

18(8):844–850.

[97] U.S. GAO (2003) Hospital emergency crowded conditions vary among hospitals and com-

munities. U.S. General Accounting Office. http://www.gao.gov/new.items/d03460.pdf,

Accessed: 2017-06-10.

[98] Van Den Heuvel J, Does RJ, Verver JP (2005) Six Sigma in healthcare: lessons learned

from a hospital. International Journal of Six Sigma and Competitive Advantage 1(4):380–

388.

[99] Wertheimer B, Jacobs RE, Bailey M, Holstein S, Chatfield S, Ohta B, Horrocks A, Hochman

K (2014) Discharge before noon: An achievable hospital goal. Journal of Hospital Medicine

9(4):210–214.

[100] WHO Global health expenditure database. Available at:

http://apps.who.int/nha/database. Accessed: 2018-05-01

[101] Wiler JL, Gentle C, Halfpenny JM, Heins A, Mehrotra A, Mikhail MG, Fite D (2010)

http://www.gao.gov/new.items/d03460.pdf


www.manaraa.com

101

Optimizing emergency department front-end operations. Annals of Emergency Medicine

55(2):142–160.

[102] Xu K, Chan CW (2016) Using future information to reduce waiting times in the

emergency department via diversion. Manufacturing Service Operations Management

18(3):314–331

[103] Zhou JC, Pan KH, Zhou DY, Zheng SW, Zhu JQ, Xu QP, Wang CL (2012) High hospi-

tal occupancy is associated with increased risk for patients boarding in the emergency

department. American Journal of Medicine 125(4):416.e1–416.e7.



www.manaraa.com

102

ABSTRACT

PROACTIVE COORDINATION IN HEALTHCARE SERVICE SYSTEMS
THROUGH NEAR REAL–TIME ANALYTICS

by

SEUNG YUP LEE

August 2018

Advisors: Drs. Ratna Babu Chinnam & Evrim Dalkiran

Major: Industrial Engineering

Degree: Doctor of Philosophy

The United States (U.S.) healthcare system is the most expensive in the world. To improve

the quality and safety of care, health information technology (HIT) is broadly adopted in hos-

pitals. While electronic health record (EHR) systems form a critical data backbone for the

facility, we need improved ‘work-flow’ coordination tools and platforms that can enhance real-

time situational awareness and facilitate effective management of resources for enhanced and

efficient care. Especially, these IT systems are mostly applied for reactive management of care

services and are lacking when they come to improving the real-time “operational intelligence”

of service networks that promote efficiency and quality of operations in a proactive manner.

In particular, we leverage operations research and predictive analytics techniques to develop

proactive coordination mechanisms and decision methods to improve the operational efficiency

of bed management service in the network spanning the emergency department (ED) to inpa-

tient units (IUs) in a hospital, a key component of healthcare in most hospitals. The purpose

of this study is to deepen our knowledge on proactive coordination empowered by predictive

analytics in dynamic healthcare environments populated by clinically heterogeneous patients

with individual information changing throughout ED caregiving processes. To enable proactive
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coordination for improved resource allocation and patient flow in the ED-IU network, we ad-

dress two components of modeling/analysis tasks, i.e., the design of coordination mechanisms

and the generation of future state information for ED patients.

First, we explore the benefits of early task initiation for the service network spanning the

ED and IUs within a hospital. In particular, we investigate the value of proactive inpatient bed

request signals from the ED to reduce ED patient boarding. Using data from a major healthcare

system, we show that the EDs suffer from severe crowding and boarding not necessarily due

to high IU bed occupancy but due to poor coordination of IU bed management activity. The

proposed proactive IU bed allocation scheme addresses this coordination requirement without

requiring additional staff resources. While the modeling framework is designed based on the

inclusion of two analytical requirements, i.e., ED disposition decision prediction and remaining

ED length of stay (LoS) estimation, the framework also accounts for imperfect patient disposi-

tion predictions and multiple patient sources (besides ED) to IUs. The ED-IU network setting is

modeled as a fork-join queueing system. Unlike typical fork-join queue structures that respond

identically to a transition, the proposed system exhibits state-dependent transition behaviors

as a function of the types of entities being processed in servers. We characterize the state sets

and sequences to facilitate analytical tractability. The proposed proactive bed allocation strat-

egy can lead to significant reductions in bed allocation delay for ED patients (up to ∼ 50%),

while not increasing delays for other IU admission sources. We also demonstrate that benefits

of proactive coordination can be attained even in the absence of highly accurate models for

predicting ED patient dispositions. The insights from our models should give confidence to

hospital managers in embracing proactive coordination and adaptive work flow technologies

enabled by modern health IT systems.
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Second, we investigate the patterns of decreasing uncertainty in ED patient disposition

decisions throughout the course of ED caregiving processes. The classification task of ED dis-

position decision prediction can be evaluated as a hierarchical classification problem, while

dealing with temporal evolution and buildup of clinical information throughout the ED care-

giving processes. Four different time stages within the ED course (registration, triage, first

lab/imaging orders, and first lab/imaging results) are identified as the main milestone care

stages. The study took place at an academic urban level 1 trauma center with an annual cen-

sus of 100,000. Data for the modeling was extracted from all ED visits between May 2014

and April 2016. Both a hierarchical disposition class structure and a progressive prediction

modeling approach are introduced and combined to fully facilitate the operationalization of

prediction results. Multinomial logistic regression models are built for carrying out the pre-

dictions under three different classification group structures: (1) discharge vs. admission,

(2) discharge vs. observation unit vs. inpatient unit, and (3) discharge vs. observation unit

vs. general practice unit vs. telemetry unit vs. intensive care unit. We characterize how the

accumulation of clinical information for ED patients throughout the ED caregiving processes

can help improve prediction results for the three-different class groups. Each class group can

enable and contribute to unique proactive coordination strategies according to the obtained

future state information and prediction quality, to enhance the quality of care and operational

efficiency around the ED. We also reveal that for different disposition classes, the prediction

quality evolution behaves in its own unique way according to the gain of relevant information.

Therefore, prediction and resource allocation and task assignment strategies can be tailored to

suit the unique behavior of the progressive information accumulation for the different classes

of patients as a function of their destination beyond the ED.
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